Review

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Search

• Basic definition of the search problem
 – Search space, operators, initial state, goal condition

• Formulation of a problem:
 – We have some control over the complexity of the search space size

• Two basic types of search problems:
 – Path vs. configuration search
Search

- **Methods for searching the search space:**
 - Search trace captured by the search tree

- **Search methods properties:**
 - Completeness, Optimality, Space and time complexity.

- **Complexities**
 - measured in terms of a branching factor (b), depth of the optimal solution (d), maximum depth of the state space (m)

Search

- **Uninformed methods:**
 - Breadth first search, Depth first search, Iterative deepening, Bi-directional search, Uniform cost search (for the weighted path search)

- **Informed methods:**
 - **Heuristic function** (h): potential of a state to reach the goal
 - **Evaluation function** (f): desirability of a state to be expanded next
 - **Best first search:**
 - Greedy $f(n) = h(n)$
 - A*: $f(n) = g(n) + h(n)$

 the role of admissible heuristics, optimality
Search

• **Constraint satisfaction problem (CSP)**
 – Variables, constraints on values (reflect the goal)
 – Formulation of a CSP as search
 – Methods and heuristics for CSP search
 • Backtracking, constraint propagation, most constrained variable, least constrained value
• **Combinatorial optimization (search). Find the best configuration.**
 – **Iterative algorithms**: Hill climbing, Simulated annealing, Genetic algorithms
 – **Advantage: memory!!**
• **Parametric optimization (search):**
 – **Methods**: Linear program, quadratic, convex optimization, gradient methods

Search

• **Adversarial search (game playing)**
 – Specifics of a game search, game problem formulation
 – rational opponent
• **Algorithms:**
 – **Minimax algorithm**
 • Complexity bottleneck for large games
 – **Alpha-Beta pruning**: prunes branches not affecting the decision of players
 – **Cutoff** of the search tree and heuristics
KR and logic

- **Knowledge representation:**
 - Syntax (how sentences are build), Semantics (meaning of sentences), Computational aspect (how sentences are manipulated)

- **Logic:**
 - A formal language for expressing knowledge and ways of reasoning
 - **Three components:**
 - A set of sentences
 - A set of interpretations
 - The valuation (meaning) function

Propositional logic

- A language for symbolic reasoning
- **Language:**
 - Syntax, Semantics
- **Satisfiability** of a sentence: at least one interpretation under which the sentence can evaluate to True.
- **Validity** of a sentence: True in all interpretations
- **Entailment:** $KB \models \alpha$
 - α is true in all worlds in which KB is true
- **Inference procedure**
 - Soundness If $KB \vdash \alpha$ then $KB \models \alpha$
 - Completeness If $KB \models \alpha$ then $KB \vdash \alpha$
Propositional logic

- **Logical inference problem:** $KB \models \alpha$?
 - Does KB entail the sentence α ?
- Logical inference problem for the propositional logic is **decidable**.
 - A procedure (program) that stops in finite time exists
- **Approaches:**
 - Truth table approach
 - Inference rule approach
 - Resolution refutation

\[
KB \models \alpha \quad \text{if and only if} \quad (KB \land \neg \alpha) \text{ is unsatisfiable}
\]

- **Normal forms:** DNF, CNF, Horn NF (conversions)

First order logic

- Deficiencies of propositional logic
- **First order logic (FOL):** allows us to represent objects, their properties, relations and statements about them
 - Variables, predicates, functions, quantifiers
 - Syntax and semantics of the sentences in FOL
- **Logical inference problem** $KB \models \alpha$?
 - **Undecidable.** No procedure that can decide the entailment for all possible input sentences in a finite number of steps.
- **Inference approaches:**
 - Inference rules
 - Resolution refutation
First order logic

- Methods for making inferences work with variables:
 - Variable substitutions
 - Unification process that takes two similar sentences and computes the substitution that makes them look the same, if it exists

- Conversions to CNF with universally quantified variables
 - Used by resolution refutation
 - The procedure is refutation-complete

Knowledge-based systems with HNF

- KBs in Horn normal form:
 - Not all sentences in FOL can be translated to HNF
 - Modus ponens is complete for Horn databases

- Inferences with KBs in Horn normal form (HNF)
 - Forward chaining
 - Backward chaining

- Production systems
 - Problem: Conflict resolution
Planning

• **Find a sequence of actions** that lead to a goal
 – Much like path search, but for very large/complex domains
 – Need to represent the dynamics of the world
• **Two basic approaches** planning problem representation:
 – **Situation calculus**
 • Explicitly represents situations (extends FOL)
 • **Solving:** theorem proving
 • **Frame problem**
 – **STRIPS**
 • Add and delete list
 • Solves the frame problem
 • **Solving:** (goal progression, goal regression)

Planning

• **Divide and conquer approach**
 – Sussman’s anomaly

• **State space vs. plan space search**
 – Search the state space or search the space of plans that are gradually built

• **Partial order (non-linear) planners:**
 – Search the space of partially build plans

• **Hierarchical planners**
Uncertainty

• Basics of probability:
 – random variable, values, probability distribution

• Joint probability distribution
 – Over variables in a set, full joint over all variables
 – Marginalization (summing out)

• Conditional probability distribution
 \[P(A | B) = \frac{P(A, B)}{P(B)} \quad \text{s.t.} \quad P(B) \neq 0 \]

• Product rule \[P(A, B) = P(A | B)P(B) \]

• Bayes rule
 \[P(A | B) = \frac{P(B | A)P(A)}{P(B)} \]

Full joint probability distribution
 – Over variables in a set, full joint over all variables

Two important things to remember:
• Any probabilistic query can be computed from the full joint distribution
• Full joint distribution can be expressed as a product of conditionals via the chain rule
Bayesian belief networks

- **Full joint distribution** over all random variables defining the domain can be very large
 - Complexity of a model, inferences, acquisition
- **Solution:** Bayesian belief networks (BBNs)

- **Two components of BBNs:**
 - Structure (directed acyclic graph)
 - Parameters (conditional prob. distributions)
- **BBN** build upon conditional independence relations:
 \[P(A, B \mid C) = P(A \mid C)P(B \mid C) \]

- **Joint probability distribution for BBNs:**
 - Product of local (variable-parents) conditionals
 \[P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^{n} P(X_i \mid pa(X_i)) \]

Bayesian belief networks

- **More compact model of the joint distribution:**
 - Reduction in the number of parameters
- **Inferences:**
 - Queries on joint probabilities
 - Queries on conditionals expressed as ratios of joint probabilities
 - Joint probabilities can be expressed in terms of full joints
 - Full joints are product of local conditionals
- **Smart way to do inferences:**
 - Interleave sums and products (variable elimination)
Decision-making in the presence of uncertainty

- **Decision tree:**
 - Decision nodes (choices are made)
 - Chance nodes (reflect stochastic outcome)
 - Outcomes (value) nodes (value of the end-situation)

- **Rational choice:**
 - Decision-maker tries to optimize the expected value

- **Use utilities to define the rational choice:**
 - Utility (or expected utility) is typically different from the expected value under uncertainty;
 - Example: the utility function for the risk-averse investor differs from the expected value

Machine learning

- **Types of machine learning:**
 - Supervised
 - Unsupervised
 - Reinforcement learning

- **Typical learning:**
 - Find a model with parameters to fit the data
 - Optimize the parameters to assure the best fit
 - **Different error criteria:**
 - Mean squared error
 - Likelihood of data
Machine learning

- **Simple learning problem:**
 - A model of a biased coin
 - \(\theta = P(\text{outcome} = \text{head}) \)
 - \(P(\text{outcome} = \text{tail}) = 1 - P(\text{outcome} = \text{head}) = 1 - \theta \)

- **Maximum likelihood estimate the parameter**
 - calculated from data (observed sequence of outcomes)

 \[
 \theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}
 \]
 - \(N_1 \) – number of heads seen, \(N_2 \) – number of tails seen

- **Learning parameters of the BBN**
 - Convert to many simple (coin) learning problems

Discriminative classification models

- **A classification model is defined using**
 - discriminant functions

- **Idea:**
 - For each class \(i \) define a function \(g_i(x) \) mapping \(X \rightarrow \mathbb{R} \)
 - When the decision on input \(x \) should be made choose the class with the highest value of \(g_i(x) \)

 \[
 \text{class} = \arg \max_i g_i(x)
 \]
Classification models

• Discriminative models
 – discriminative function learned directly
 – Logistic regression
 \[g_1(x) = g(w^Tx + w_0) \]
 \[g_0(x) = 1 - g(w^Tx + w_0) \]
 where \(g(z) = 1/(1 + e^{-z}) \)
 – Support vector machines
 \[g_1(x) = w^Tx + w_0 \]
 \[g_0(x) = -(w^Tx + w_0) \]

• Generative models
 – Model and learn
 \[p(x, y) = p(y)p(x | y) \]
 – Make decision by calculating
 \[p(y | x) \propto p(y)p(x | y) \]
 – Example: Naïve Bayes model