Informed search methods

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcements

Homework assignment 2 is out
• Due on Thursday, September 18, 2014 before the class
• Two parts:
 – Pen and pencil part
 – Programming part (Puzzle 8): informed search methods

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/
Search methods

• **Uninformed search methods**
 – Breadth-first search (BFS)
 – Depth-first search (DFS)
 – Iterative deepening (IDA)
 – Bi-directional search
 – Uniform cost search

• **Informed (or heuristic) search methods:**
 – Best first search with the heuristic function

Evaluation-function driven search

• A search strategy can be defined in terms of a node evaluation function
 – Similarly to the path cost for the uniform cost search

• **Evaluation function**
 – Denoted $f(n)$
 – Defines the desirability of a node to be expanded next

• **Evaluation-function driven search:**
 – expand the node (state) with the best evaluation-function value

• **Implementation:**
 – priority queue with nodes in the decreasing order of their evaluation function value
Uniform cost search

- Uniform cost search (Dijkstra’s shortest path):
 - A special case of the evaluation-function driven search
 \[f(n) = g(n) \]
- Path cost function \(g(n) \);
 - path cost from the initial state to \(n \)

- Uniform-cost search:
 - Can handle general minimum cost path-search problem:
 - weights or costs associated with operators (links).

- Note: Uniform cost search relies on the problem definition only
 - It is an uninformed search method

Additional information to guide the search

- Uninformed search methods
 - use only the information from the problem definition; and
 - past explorations, e.g. cost of the path generated so far

- Informed search methods
 - incorporate additional measure of a potential of a specific state to reach the goal
 - a potential of a state (node) to reach a goal is measured by a heuristic function

- Heuristic function is denoted \(h(n) \)
Best-first search

Best-first search = evaluation-function driven search
• Typically incorporates a heuristic function, $h(n)$, into the evaluation function $f(n)$ to guide the search.

Heuristic function $h(n)$:
• Measures a potential of a state (node) to reach a goal
• Typically expressed in terms of some distance to a goal estimate

Example of a heuristic function:
• Assume a shortest path problem with city distances on connections
• Straight-line distances between cities give additional information we can use to guide the search

Example: traveler problem with straight-line distance information

- Straight-line distances give an estimate of the cost of the path between the two cities
Best-first search

Best-first search = evaluation-function driven search

- Typically incorporates a heuristic function, \(h(n) \), into the evaluation function \(f(n) \) to guide the search.
- **Heuristic function**: measures a potential of a state (node) to reach a goal

Special cases (differ in the design of evaluation function):

- **Greedy search**
 \[
 f(n) = h(n)
 \]

- **A* algorithm**
 \[
 f(n) = g(n) + h(n)
 \]
 + **Iterative deepening** version of A*: IDA*

Greedy search method

- Evaluation function is equal to the heuristic function
 \[
 f(n) = h(n)
 \]
- **Idea**: the node that seems to be the closest to the goal is expanded first
Greedy search

\[f(n) = h(n) \]

queue

Arad → Arad

366

Greedy search

\[f(n) = h(n) \]

queue

Sibiu → Arad

Zerind

374

75

140

118

366

Timisoara

329

253

Arad

Sibiu

Timisoara

Zerind

374
Greedy search

\[f(n) = h(n) \]

Greedy search

- **Arad**
 - **Zerind**
 - **Sibiu**
 - **Fagaras**
 - **Rimnicu Vilcea**
 - **Timisoara**

Queue

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
</tbody>
</table>

Greedy search

\[f(n) = h(n) \]

Greedy search

- **Bucharest**
 - **Arad**
 - **Sibiu**
 - **Fagaras**
 - **Rimnicu Vilcea**
 - **Timisoara**

Queue

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Rimnicu V.</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
</tbody>
</table>

Goal !!!
Properties of greedy search

• Completeness: ?
 – No. We can loop forever. Nodes that seem to be the best choices can lead to cycles.
 – Yes. Elimination of state repeats can solve the problem.

• Optimality: ?

• Time complexity: ?

• Memory (space) complexity: ?
Example: traveler problem with straight-line distance information

- Greedy search result

Example: traveler problem with straight-line distance information

- Greedy search and optimality
Properties of greedy search

• Completeness:
 – No. We can loop forever. Nodes that seem to be the best choices can lead to cycles.
 – Yes. Elimination of state repeats can solve the problem.

• Optimality: No.
 Even if we reach the goal, we may be biased by a bad heuristic estimate. Evaluation function disregards the cost of the path built so far.

• Time complexity: \(O(b^m) \)
 Worst case !!! But often better!

• Memory (space) complexity: \(O(b^m) \)
 Often better!

A* search

• The problem with the greedy search is that it can keep expanding paths that are already very expensive.

• The problem with the uniform-cost search is that it uses only past exploration information (path cost), no additional information is utilized.

• A* search
 \[f(n) = g(n) + h(n) \]
 \(g(n) \) - cost of reaching the state
 \(h(n) \) - estimate of the cost from the current state to a goal
 \(f(n) \) - estimate of the path length

• Additional A* condition: admissible heuristic
 \[h(n) \leq h^*(n) \quad \text{for all } n \]
A* search example

f(n)

- **Arad**
 - 366

queue

- **Arad**
 - 366

A* search example

f(n)

- **Arad**
 - 366

queue

- **Zerind**
 - 449

- **Sibiu**
 - 393

- **Timisoara**
 - 447

A* search example

f(n)

- **Arad**
 - 366

queue

- **Sibiu**
 - 393

- **Timisoara**
 - 447

- **Zerind**
 - 449
A* search example

Nodes:
- **Arad**
- **Zerind**
- **Sibiu**
- **Timisoara**
- **Fagaras**
- **Vilcea**
- **Pitesti**
- **Craiova**

Edges and Weights:
- Arad to Zerind: 75
- Zerind to Sibiu: 140
- Sibiu to Arad: 151
- Sibiu to Fagaras: 99
- Sibiu to Timisoara: 80
- Arad to Timisoara: 447
- Zerind to Fagaras: 366

Costs:
- Arad: 646
- Zerind: 449
- Sibiu: 393
- Timisoara: 447
- Fagaras: 417
- Vilcea: 413
- Pitesti: 415
- Craiova: 553
- Sibiu: 526

Queue:
- \(f(n) \)

Visited Nodes:
- Arad
- Zerind
- Sibiu
- Timisoara
- Fagaras
- Vilcea
- Pitesti
- Craiova
- Sibiu
A* search example

CS 1571 Intro to AI
M. Hauskrecht
A* search example

Properties of A* search

- **Completeness**: ?
- **Optimality**: ?
- **Time complexity**: – ?
- **Memory (space) complexity**: – ?
Properties of A* search

• **Completeness:** can we get stuck in the infinite loop?
 - No! Then the algorithm is complete even without repeat checks.

• **Optimality:** ?

• **Time complexity:** ?

• **Memory (space) complexity:** ?
Properties of A* search

- Completeness: Yes.
- Optimality: ?
- Time complexity: – ?
- Memory (space) complexity: – ?

Optimality of A*

- In general, a heuristic function $h(n)$:
 - It can overestimate, be equal or underestimate the true distance of a node to the goal $h^*(n)$
- Is the A* optimal for an arbitrary heuristic function?
Example: traveler problem with straight-line distance information

• Admissible heuristics

Example: traveler problem with straight-line distance information

• Admissible heuristics
Example: traveler problem with straight-line distance information

- Admissible heuristics: Total path: 450
 is suboptimal

Optimality of A*

- In general, a heuristic function $h(n)$:
 Can overestimate, be equal or underestimate the true distance of a node to the goal $h^*(n)$

- Is the A* optimal for an arbitrary heuristic function?
- No!
Optimality of A*

- In general, a heuristic function \(h(n) \):
 - Can overestimate, be equal or underestimate the true distance of a node to the goal \(h^*(n) \)
- Admissible heuristic condition
 - Never overestimate the distance to the goal !!!
 \[
 h(n) \leq h^*(n) \quad \text{for all } n
 \]
 - Example: the straight-line distance in the travel problem never overestimates the actual distance

Is A* search with an admissible heuristic optimal ??

Optimality of A* (proof)

- Let G1 be the optimal goal (with the minimum path distance).
 - Assume that we have a sub-optimal goal G2. Let n be a node that is on the optimal path and is in the queue together with G2

Then:
\[
\begin{align*}
 f(G2) &= g(G2) \quad \text{since } h(G2) = 0 \\
 &> g(G1) \quad \text{since G2 is suboptimal} \\
 &\geq f(n) \quad \text{since h is admissible}
\end{align*}
\]

And thus A* never selects G2 before n
Properties of A* search

• Completeness: Yes.

• Optimality: Yes (with the admissible heuristic)

• Time complexity:
 – ?

• Memory (space) complexity:
 – ?

• Time complexity:
 – Order roughly the number of nodes with $f(n)$ smaller than the cost of the optimal path g^*

• Memory (space) complexity:
 – Same as time complexity (all nodes in the memory)
Admissible heuristics

- Heuristics can be designed based on relaxed version of problems
- **Example:** the 8-puzzle problem

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

- **Admissible heuristics:**
 1. number of misplaced tiles
 2. Sum of distances of all tiles from their goal positions
 (Manhattan distance)

Heuristics 1: number of misplaced tiles

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

$h(n)$ for the initial position: 7
Admissible heuristics

- **Heuristic 2:** Sum of distances of all tiles from their goal positions (Manhattan distance)

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5 6 1 8 7 3 2</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>

 h(n) for the initial position:

 \[2 + 3 + 3 + 1 + 1 + 2 + 0 + 2 = 14 \]

 For tiles: 1 2 3 4 5 6 7 8

- We can have multiple admissible heuristics for the same problem
- **Dominance:** Heuristic function \(h_1 \) dominates \(h_2 \) if

 \[
 \forall n \quad h_1(n) \geq h_2(n)
 \]

- **Combination:** Two or more admissible heuristics can be combined to give a new admissible heuristic
 - Assume two admissible heuristics \(h_1, h_2 \)

 Then: \(h_3(n) = \max(h_1(n), h_2(n)) \)

 is admissible