Uninformed search methods

Homework assignment 1 is out
• Due on Thursday, September 11, 2014 before the lecture
• Theoretical and programming part:
 – Programming part involves Puzzle 8 problem.

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/
Search

- **Search**: The process of exploration of the search space
- **Design goal**: We want the search to be as efficient as possible
- **The efficiency of the search depends on**:
 - The search space and its size
 - **Method used to explore (traverse) the search space**
 - Condition to test the satisfaction of the search objective

Uninformed search methods

- rely only on the information available in the problem definition
 - Breadth first search
 - Depth first search
 - Iterative deepening
 - Bi-directional search

For the minimum cost path problem:
 - Uniform cost search
Breadth first search (BFS)

- The shallowest node is expanded first

Breadth-first search

- Expand the shallowest node first
- Implementation: put successors to the end of the queue (FIFO)
Breadth-first search

queue

Zerind
Sibiu
Timisoara

Arad
Zerind
Sibiu
Timisoara

queue

Sibiu
Timisoara
Arad
Oradea

Arad
Oradea
Arad
Oradea
Fagaras
Rimnicu Vilcea
Arad
Lugoj

Arad
Oradea

Arad
Oradea
Fagaras
Rimnicu Vilcea
Arad
Lugoj
Breadth-first search

queue

Arad
Oradea
Arad
Oradea
Fagaras
Rimnicu Vilcea

queue

Arad
Oradea
Arad
Oradea
Fagaras
Rimnicu Vilcea

CS 1571 Intro to AI
M. Hauskrecht
Properties of breadth-first search

- Completeness: Yes. The solution is reached if it exists.
- Optimality: ?
- Time complexity: ?
- Memory (space) complexity: ?
Properties of breadth-first search

- **Completeness:** Yes. The solution is reached if it exists.
- **Optimality:** Yes, for the shortest path.
- **Time complexity:** ?
- **Memory (space) complexity:** ?

BFS – time complexity

<table>
<thead>
<tr>
<th>depth</th>
<th>number of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$2^1=2$</td>
</tr>
<tr>
<td>2</td>
<td>$2^2=4$</td>
</tr>
<tr>
<td>3</td>
<td>$2^3=8$</td>
</tr>
<tr>
<td>d</td>
<td>2^d (b^d)</td>
</tr>
<tr>
<td>d+1</td>
<td>2^{d+1} (b^{d+1})</td>
</tr>
</tbody>
</table>

Total nodes: ?
BFS – time complexity

<table>
<thead>
<tr>
<th>depth</th>
<th>number of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$2^1 = 2$</td>
</tr>
<tr>
<td>2</td>
<td>$2^2 = 4$</td>
</tr>
<tr>
<td>3</td>
<td>$2^3 = 8$</td>
</tr>
<tr>
<td>d</td>
<td>$2^d (b^d)$</td>
</tr>
<tr>
<td>d+1</td>
<td>$2^{d+1} (b^{d+1})$</td>
</tr>
</tbody>
</table>

Expanded nodes: $O(b^d)$
Total nodes: $O(b^{d+1})$

Properties of breadth-first search

- **Completeness**: Yes. The solution is reached if it exists.

- **Optimality**: Yes, for the shortest path.

- **Time complexity**:
 \[1 + b + b^2 + \ldots + b^d = O(b^d) \]

 exponential in the depth of the solution \(d\)

- **Memory (space) complexity**: ?
BFS – memory complexity

• Count nodes kept in the tree structure or in the queue

<table>
<thead>
<tr>
<th>depth</th>
<th>number of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$2^1=2$</td>
</tr>
<tr>
<td>2</td>
<td>$2^2=4$</td>
</tr>
<tr>
<td>3</td>
<td>$2^3=8$</td>
</tr>
<tr>
<td>d</td>
<td>2^d</td>
</tr>
<tr>
<td>d+1</td>
<td>2^{d+1}</td>
</tr>
</tbody>
</table>

Total nodes: $O(b^{d+1})$

Expanded nodes: $O(b^d)$
Properties of breadth-first search

- **Completeness:** Yes. The solution is reached if it exists.

- **Optimality:** Yes, for the shortest path.

- **Time complexity:**
 \[1 + b + b^2 + \ldots + b^d = O(b^d)\]
 exponential in the depth of the solution \(d\)

- **Memory (space) complexity:**
 \[O(b^d)\]
 nodes are kept in the memory

BFS – time complexity

<table>
<thead>
<tr>
<th>Depth</th>
<th>Number of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(2^1=2)</td>
</tr>
<tr>
<td>2</td>
<td>(2^2=4)</td>
</tr>
<tr>
<td>3</td>
<td>(2^3=8)</td>
</tr>
<tr>
<td>(d)</td>
<td>(2^d) ((b^d))</td>
</tr>
<tr>
<td>(d+1)</td>
<td>(2^{d+1}) ((b^{d+1}))</td>
</tr>
</tbody>
</table>

Expanded nodes: \(O(b^d)\)

Total nodes: \(O(b^{d+1})\)
Depth-first search (DFS)

- The deepest node is expanded first
- Backtrack when the path cannot be further expanded
Depth-first search

1. Arad
2. Zerind
3. Sibiu
4. Timisoara
5. Oradea
6. Fagaras
7. Rimnicu Vilcea
8. Arad
9. Lugoj

Queue: Zerind, Sibiu, Timisoara
Properties of depth-first search

- Completeness: Does it always find the solution if it exists?

- Optimality: ?

- Time complexity: ?

- Memory (space) complexity: ?
Properties of depth-first search

- **Completeness:** No. Infinite loops can occur.

- **Optimality:** does it find the minimum length path?

- **Time complexity:** ?

- **Memory (space) complexity:** ?

Properties of depth-first search

- **Completeness:** No. Infinite loops can occur.

 Solution: prevent occurrence of infinite loops.

- **Optimality:** does it find the minimum length path?

- **Time complexity:** ?

- **Memory (space) complexity:** ?
Properties of depth-first search

- **Completeness:** No. If we permit infinite loops.
 Yes, if we prevent them.
- **Optimality:** does it find the minimum length path?
- **Time complexity:** ?
- **Memory (space) complexity:** ?
Properties of depth-first search

- **Completeness:** No. If we permit infinite loops. Yes, if we prevent them.
- **Optimality:** No. Solution found first may not be the shortest possible.
- **Time complexity:** assume a finite maximum tree depth \(m \)
- **Memory (space) complexity:** ?

DFS – time complexity

<table>
<thead>
<tr>
<th>depth</th>
<th>number of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(2^1=2)</td>
</tr>
<tr>
<td>2</td>
<td>(2^2=4)</td>
</tr>
<tr>
<td>3</td>
<td>(2^3=8)</td>
</tr>
<tr>
<td></td>
<td>(2^d)</td>
</tr>
<tr>
<td>m</td>
<td>(2^m, 2^{m-d})</td>
</tr>
</tbody>
</table>

Complexity:
DFS – time complexity

<table>
<thead>
<tr>
<th>Depth</th>
<th>Number of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$2^1=2$</td>
</tr>
<tr>
<td>2</td>
<td>$2^2=4$</td>
</tr>
<tr>
<td>3</td>
<td>$2^3=8$</td>
</tr>
<tr>
<td>(d)</td>
<td>2^d</td>
</tr>
<tr>
<td>(m)</td>
<td>$2^m, 2^{m-d}$</td>
</tr>
</tbody>
</table>

Complexity: \(O(b^m)\)

Properties of depth-first search

- **Completeness:** No. If we permit infinite loops.
 Yes, if we prevent them.

- **Optimality:** No. Solution found first may not be the shortest possible.

- **Time complexity:**
 \(O(b^m)\)
 exponential in the maximum depth of the search tree \(m\)

- **Memory (space) complexity:** ?
Properties of depth-first search

- **Completeness**: No. If we permit infinite loops. Yes, if we prevent them.
- **Optimality**: No. Solution found first may not be the shortest possible.
- **Time complexity**: $O(b^m)$
 - exponential in the maximum depth of the search tree m
- **Memory (space) complexity**: ?

DFS – memory complexity

<table>
<thead>
<tr>
<th>depth</th>
<th>number of nodes kept</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>
DFS – memory complexity

depth number of nodes kept
0 0
1 2 = b
DFS – memory complexity

<table>
<thead>
<tr>
<th>Depth</th>
<th>Number of Nodes Kept</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>m</td>
<td>2=b</td>
</tr>
</tbody>
</table>

Complexity: $O(b^m)$
DFS – memory complexity

Count nodes kept in the tree structure or the queue

<table>
<thead>
<tr>
<th>depth</th>
<th>number of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2 = b</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>m</td>
<td>2</td>
</tr>
</tbody>
</table>

Total nodes: \(O(bm) \)

Properties of depth-first search

- **Completeness**: No. If we permit infinite loops.
 Yes, if we prevent them.
- **Optimality**: No. Solution found first may not be the shortest possible.
- **Time complexity**: \(O(b^m) \)
 exponential in the maximum depth of the search tree \(m \)
- **Memory (space) complexity**: \(O(bm) \)
 linear in the maximum depth of the search tree \(m \)
Properties of depth-first search

- **Completeness**: No. If we permit infinite loops **Yes**, if we prevent them.
- **Optimality**: No. Solution found first may not be the shortest possible.
- **Time complexity**: $O(b^m)$
 exponential in the maximum depth of the search tree m
- **Memory (space) complexity**: $O(bl)$
 the tree size we need to keep is linear in the maximum depth of the search tree m

Limited-depth depth first search

- How to eliminate infinite depth-first exploration?
- Put the limit (l) on the depth of the depth-first exploration

Limit $l=2$

- **Time complexity**: $O(b^l)$
- **Memory complexity**: $O(bl)$
 l - is the given limit

Not explored
Limited depth depth-first search

- Avoids pitfalls of depth first search
- Use cutoff on the maximum depth of the tree
- **Problem:** How to pick the maximum depth?

- **Assume:** we have a traveler problem with 20 cities
- How to pick the maximum tree depth?

Limited depth depth-first search

- Avoids pitfalls of depth first search
- Use cutoff on the maximum depth of the tree
- **Problem:** How to pick the maximum depth?

- **Assume:** we have a traveler problem with 20 cities
 - How to pick the maximum tree depth?
 - We need to consider only paths of length < 20

- Limited depth DFS
- **Time complexity:** \(O(b^l) \)
- **Memory complexity:** \(O(bl) \)
Elimination of state repeats

While searching the state space for the solution we can encounter the same state many times.

Question: Is it necessary to keep and expand all copies of states in the search tree?

Two possible cases:

(A) Cyclic state repeats
(B) Non-cyclic state repeats

Elimination of cycles

Case A: Corresponds to the path with a cycle

Question: Can the branch (path) in which the same state is visited twice ever be a part of the optimal (shortest) path between the initial state and the goal?

???
Elimination of cycles

Case A: Corresponds to the path with a cycle

Question: Can the branch (path) in which the same state is visited twice ever be a part of the optimal (shortest) path between the initial state and the goal? No!!

Branches representing cycles cannot be the part of the shortest solution and can be eliminated.

Elimination of cycles

How to check for cyclic state repeats:
- Check ancestors in the tree structure
- Caveat: we need to keep the tree.

Do not expand the node with the state that is the same as the state in one of its ancestors.
Elimination of non-cyclic state repeats

Case B: nodes with the same state are not on the same path from the initial state

Question: Is one of the nodes nodeB-1, nodeB-2 better or preferable?

Yes. nodeB-1 represents a shorter path from the initial state to B
Elimination of non-cyclic state repeats

Conclusion: Since we are happy with the optimal solution, nodeB-2 can be eliminated. It does not affect the optimality of the solution.

Problem: Nodes can be encountered in different order during different search strategies.

Elimination of non-cyclic state repeats with BFS

Breadth FS is well behaved with regard to non-cyclic state repeats: nodeB-1 is always expanded before nodeB-2

• Order of expansion determines the correct elimination strategy
• We can safely eliminate the node that is associated with the state that has been expanded before
Elimination of state repeats for the BFS

For the breadth-first search (BFS)

- we can safely eliminate all second, third, fourth, etc. occurrences of the same state
- this rule covers both cyclic and non-cyclic repeats !!!

Implementation of all state repeat elimination through marking:

- All expanded states are marked
- All marked states are stored in a hash table
- Checking if the node has ever been expanded corresponds to the mark structure lookup

Use hash table to implement marking

Elimination of non-cyclic state repeats with DFS

Depth FS: nodeB-2 is expanded before nodeB-1

- The order of node expansion does not imply correct elimination strategy
- we need to remember the length of the path between nodes to safely eliminate them
Elimination of all state redundancies

- **General strategy:** A node is redundant if there is another node with exactly the same state and a shorter path from the initial state
 - Works for any search method
 - Uses additional path length information

Implementation: hash table with the minimum path value:

- The new node is redundant and can be eliminated if
 - it is in the hash table (it is marked), and
 - its path is longer or equal to the value stored.
- Otherwise the new node cannot be eliminated and it is entered together with its value into the hash table. (if the state was in the hash table the new path value is better and needs to be overwritten.)