Knowledge Representation.
Propositional logic.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcements

- Homework assignment 3 due today
- Homework assignment 4 is out
 - Programming and experiments
 - Tic-tac-toe player
 - Competition

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/
Knowledge-based agent

- Knowledge base (KB):
 - Knowledge that describe facts about the world in some formal (representational) language
 - Domain specific
- Inference engine:
 - A set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. Inferences typically require search.
 - Domain independent

Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- Knowledge base represents
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

| If | 1. The stain of the organism is gram-positive, and
| 2. The morphology of the organism is coccus, and
| 3. The growth conformation of the organism is chains |
| Then | the identity of the organism is streptococcus |

- Inference engine:
 - manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)
Knowledge representation

- **Objective:** express the knowledge about the world in a computer-tractable form
- **Knowledge representation languages (KRLs)**
 Key aspects:
 - **Syntax:** describes how sentences in KRL are formed in the language
 - **Semantics:** describes the meaning of sentences, what is it the sentence refers to in the real world
 - **Computational aspect:** describes how sentences and objects in KRL are manipulated in concordance with semantic conventions

Many KB systems rely on some variant of logic

Logic

A formal language for expressing knowledge and for making logical inferences

Defined by:

- **A set of sentences:** A sentence is constructed from a set of primitives according to syntax rules
- **A set of interpretations:** An interpretation I gives a semantic to primitives. It associates primitives with objects or values
 - I: primitives \rightarrow objects/values
- **The valuation (meaning) function V:**
 - Assigns a value (typically the truth value) to a given sentence under some interpretation
 $V : \text{sentence} \times \text{interpretation} \rightarrow \{ \text{True} , \text{False} \}$
Propositional logic

• The simplest logic

• **Definition:**
 – A **proposition** is a statement that is either true or false.

• Examples:
 – Pitt is located in the Oakland section of Pittsburgh.
 • (T)
 – 5 + 2 = 8.
 • ?
Propositional logic

• The simplest logic

• **Definition:**
 – A proposition is a statement that is either true or false.

• Examples:
 – Pitt is located in the Oakland section of Pittsburgh.
 • (T)
 – 5 + 2 = 8.
 • (F)
 – It is raining today.
 • ?
Propositional logic

• Examples (cont.):
 – How are you?
 • ?
 – a question is not a proposition
 – x + 5 = 3
 • ?
Propositional logic

• Examples (cont.):
 – How are you?
 • a question is not a proposition
 – \(x + 5 = 3 \)
 • since \(x \) is not specified, neither true nor false
 – 2 is a prime number.
 • ?

• Examples (cont.):
 – How are you?
 • a question is not a proposition
 – \(x + 5 = 3 \)
 • since \(x \) is not specified, neither true nor false
 – 2 is a prime number.
 • (T)
 – She is very talented.
 • ?
Propositional logic

• Examples (cont.):
 – How are you?
 • a question is not a proposition
 – \(x + 5 = 3 \)
 • since \(x \) is not specified, neither true nor false
 – 2 is a prime number.
 • (T)
 – She is very talented.
 • since she is not specified, neither true nor false
 – There are other life forms on other planets in the universe.
 • ?
Propositional logic. Syntax

- Formally propositional logic P:
 - Is defined by Syntax + interpretation + semantics of P

Syntax:
- Symbols (alphabet) in P:
 - Constants: $True$, $False$
 - Propositional symbols
 Examples:
 - P
 - $Pitt$ is located in the Oakland section of Pittsburgh.,
 - It rains outside, etc.
 - A set of connectives:
 $\neg, \land, \lor, \Rightarrow, \Leftarrow$

Sentences in the propositional logic:
- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or $Light$ in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via logical connectives
 - If A, B are sentences then
 $\neg A$ ($A \land B$) ($A \lor B$) ($A \Rightarrow B$) ($A \Leftarrow B$)
 or ($A \lor B$) ($A \lor \neg B$)
 are sentences
Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

1. **Interpretation of propositional symbols and constants**
 - Semantics of atomic sentences

2. **Through the meaning of connectives**
 - Meaning (semantics) of composite sentences

Semantic: propositional symbols

A propositional symbol

• a statement about the world that is either true or false

Examples:

 – *Pitt is located in the Oakland section of Pittsburgh*
 – *It rains outside*
 – *Light in the room is on*

• An **interpretation** maps symbols to one of the two values: **True (T)**, or **False (F)**, depending on whether the symbol is satisfied in the world

 I: *Light in the room is on* -> **True**, *It rains outside* -> **False**

 I’: *Light in the room is on* -> **False**, *It rains outside* -> **False**
Semantic: propositional symbols

The meaning (value) of the propositional symbol for a specific interpretation is given by its interpretation

\[I: \text{Light in the room is on} \rightarrow \text{True}, \; \text{It rains outside} \rightarrow \text{False} \]

\[V(\text{Light in the room is on}, I) = \text{True} \]

\[V(\text{It rains outside}, I) = \text{False} \]

\[I': \text{Light in the room is on} \rightarrow \text{False}, \; \text{It rains outside} \rightarrow \text{False} \]

\[V(\text{Light in the room is on}, I') = \text{False} \]

Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding True, False value

\[V(\text{True}, I) = \text{True} \]

\[V(\text{False}, I) = \text{False} \]

For any interpretation \(I \)
Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Translation

Translation of English sentences to propositional logic:

1. Identify atomic sentences that are propositions
2. Use logical connectives to translate more complex composite sentences that consist of many atomic sentences

Assume the following sentence:
- It is not sunny this afternoon and it is colder than yesterday.

Atomic sentences:
- $p = \text{It is sunny this afternoon}$
- $q = \text{it is colder than yesterday}$

Translation: $\neg p \land q$
Translation

Assume the following sentences:

• It is not sunny this afternoon and it is colder than yesterday.
• We will go swimming only if it is sunny.
• If we do not go swimming then we will take a canoe trip.
• If we take a canoe trip, then we will be home by sunset.

Denote:

• p = It is sunny this afternoon
• q = it is colder than yesterday
• r = We will go swimming
• s= we will take a canoe trip
• t= We will be home by sunset

Translation

Assume the following sentences:

• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
• We will go swimming only if it is sunny.
• If we do not go swimming then we will take a canoe trip.
• If we take a canoe trip, then we will be home by sunset.

Denote:

• p = It is sunny this afternoon
• q = it is colder than yesterday
• r = We will go swimming
• s= we will take a canoe trip
• t= We will be home by sunset
Translation

Assume the following sentences:
• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
• We will go swimming only if it is sunny. \(r \rightarrow p \)
• If we do not go swimming then we will take a canoe trip. \(\neg r \rightarrow s \)
• If we take a canoe trip, then we will be home by sunset.

Denote:
• \(p \) = It is sunny this afternoon
• \(q \) = it is colder than yesterday
• \(r \) = We will go swimming
• \(s \) = we will take a canoe trip
• \(t \) = We will be home by sunset
Translation

Assume the following sentences:

• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
• We will go swimming only if it is sunny. \(r \rightarrow p \)
• If we do not go swimming then we will take a canoe trip. \(\neg r \rightarrow s \)
• If we take a canoe trip, then we will be home by sunset. \(s \rightarrow t \)

Denote:

• \(p = \) It is sunny this afternoon
• \(q = \) it is colder than yesterday
• \(r = \) We will go swimming
• \(s = \) we will take a canoe trip
• \(t = \) We will be home by sunset

Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

• **Contradiction** (always False)
 \[P \land \neg P \]

• **Tautology** (always True)
 \[P \lor \neg P \]

\[\neg (P \lor Q) \iff (\neg P \land \neg Q) \]
\[\neg (P \land Q) \iff (\neg P \lor \neg Q) \]

\[\{ \text{DeMorgan’s Laws} \]
Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

- **Example:**
 - Primitives: P,Q
 - Interpretations:
 - P → True, Q → True
 - P → True, Q → False
 - Sentence: \(P \lor Q \)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>((P \lor Q) \land \neg Q) (\Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

- **Example:**
 - Primitives: P,Q
 - Interpretations:
 - P → True, Q → True
 - P → True, Q → False
 - Sentence: \(P \lor Q \)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>((P \lor Q) \land \neg Q) (\Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

CS 1571 Intro to AI

M. Hauskrecht

16
Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is satisfiable if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True

Example:
- Sentence: \((P \lor Q) \land \neg Q\)
- Satisfiable?

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is satisfiable if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True

Example:
- Sentence: \((P \lor Q) \land \neg Q\)
- Satisfiable? Yes True for \(P \Rightarrow True, \ Q \Rightarrow False\)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

• An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

• A sentence is satisfiable if it has a model;
 – There is at least one interpretation under which the sentence can evaluate to True.

• A sentence is valid if it is True in all interpretations
 – i.e., if its negation is not satisfiable (leads to contradiction)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Entailment

- **Entailment** reflects the relation of one fact in the world following from the others.

\[
\alpha \models KB
\]

- Entailment \(KB \models \alpha \)
- Knowledge base KB entails sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where KB is true

Sound and complete inference

Inference is a process by which new sentences are derived from existing sentences in the KB.
- the inference process is implemented on a computer

Assume an **inference procedure** \(i \) that
- derives a sentence \(\alpha \) from the KB: \(KB \vdash_i \alpha \)

Properties of the inference procedure in terms of entailment
- **Soundness:** An inference procedure is **sound**

 \[
 \text{If } KB \vdash_i \alpha \text{ then it is true that } KB \models \alpha
 \]
- **Completeness:** An inference procedure is **complete**

 \[
 \text{If } KB \models \alpha \text{ then it is true that } KB \vdash_i \alpha
 \]
Logical inference problem

Logical inference problem:
• Given:
 – a knowledge base KB (a set of sentences) and
 – a sentence α (called a theorem),
• Does a KB semantically entail α? $KB \models \alpha$?
In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?
Answer: Yes. Logical inference problem for the propositional logic is decidable.

Solving logical inference problem

In the following:
How to design the procedure that answers: $KB \models \alpha$?

Three approaches:
• Truth-table approach
• Inference rules
• Conversion to the inverse SAT problem
 – Resolution-refutation
Truth-table approach

Problem: $KB \models \alpha$?
- We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

Example:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$P \iff Q$</th>
<th>$(P \lor \neg Q) \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

Truth-table approach

Problem: $KB \models \alpha$?
- We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$P \iff Q$</th>
<th>$(P \lor \neg Q) \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
Truth-table approach

Problem: \(KB \models \alpha ? \)
- We need to check all possible interpretations for which the KB is true (models of KB) whether \(\alpha \) is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:

<table>
<thead>
<tr>
<th>KB</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P \lor Q) (P \iff Q) ((P \lor \neg Q) \land Q)</td>
<td>True False False True</td>
</tr>
<tr>
<td>True True</td>
<td>True False False True</td>
</tr>
<tr>
<td>True False</td>
<td>True False False False</td>
</tr>
<tr>
<td>False True</td>
<td>True False False False</td>
</tr>
<tr>
<td>False False</td>
<td>False False False False</td>
</tr>
</tbody>
</table>

Truth-table approach

A two steps procedure:
1. Generate table for all possible interpretations
2. Check whether the sentence \(\alpha \) evaluates to true whenever \(KB \) evaluates to true

Example:
\(KB = (A \lor C) \land (B \lor \neg C) \quad \alpha = (A \lor B) \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A \lor C</th>
<th>(B \lor \neg C)</th>
<th>KB</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>
Truth-table approach

A two steps procedure:
1. Generate table for all possible interpretations
2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$, $\alpha = (A \lor B)$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$(B \lor \neg C)$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Truth-table approach

\[KB = (A \lor C) \land (B \lor \neg C) \quad \alpha = (A \lor B) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A \lor C</th>
<th>(B \lor \neg C)</th>
<th>KB</th>
<th>\alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

KB entails \(\alpha \)

- The truth-table approach is sound and complete for the propositional logic!!