Finding optimal configurations

Announcements

• Homework assignment 2 due today
• Homework assignment 3 is out
 – Programming and experiments
 – Simulated annealing + Genetic algorithm
 – Competition

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/
Search for the optimal configuration

Constrain satisfaction problem:
Objective: find a configuration that satisfies all constraints

Optimal configuration problem:
Objective: find the best configuration
The quality of a configuration: is defined by some quality measure that reflects our preference towards each configuration (or state)

Search for the optimal configuration

Optimal configuration search:
• Configurations are described in terms of variables and their values
• Each configuration has a quality measure
• Goal: find the configuration with the best value

If the space of configurations we search among is
• Discrete or finite
 – then it is a combinatorial optimization problem
• Continuous
 – then it is a parametric optimization problem
Example: Traveling salesman problem

Problem:
- A graph with distances

Goal: find the shortest tour which visits every city once and returns to the start

An example of a valid tour: ABCDEF

Example: N queens

- A CSP problem
- Is it possible to formulate the problem as an optimal configuration search problem?
Example: N queens

- A CSP problem
- Is it possible to formulate the problem as an optimal configuration search problem? Yes.
- Constraints are mapped to the objective cost function that counts the number of violated constraints

![Chessboard with 3 violations](image1)

of violations = 3

![Chessboard with 0 violations](image2)

of violations = 0

Iterative optimization methods

Properties:

- Search the space of “complete” configurations
- Take advantage of local moves
 - Operators make “local” changes to “complete” configurations
- Keep track of just one state (the current state)
 - no memory of past states
 - !!! No search tree is necessary !!!
Example: N-queens

- “Local” operators for generating the next state:
 - Select a variable (a queen)
 - Reallocate its position

Example: Traveling salesman problem

“Local” operator for generating the next state:
- divide the existing tour into two parts,
- reconnect the two parts in the opposite order

Example:

- ABCDEF
- ABCD | EF |
- ABCDFE
Example: Traveling salesman problem

“Local” operator:
– generates the next configuration (state)

Searching the configuration space

Search algorithms
• keep only one configuration (the current configuration)

Problem:
• How to decide about which operator to apply?
Search algorithms

Strategies to choose the configuration (state) to be visited next:

– Hill climbing
– Simulated annealing

• Extensions to multiple current states:
 – Genetic algorithms
 – Beam search

• Note: Maximization is inverse of the minimization
 \[\min f(X) \Leftrightarrow \max \left[-f(X) \right] \]

Hill climbing

• What configurations are considered next?
• What move the hill climbing makes?
Hill climbing

• Look at the local neighborhood and choose the one with the best value

• What can go wrong?

Hill climbing

• Hill climbing can get trapped in the local optimum
Hill climbing

- Hill climbing can get clueless on plateaus

How to remedy the problem of local optima?

Better

No more local improvement
Hill climbing

- Multiple restarts of the hill climbing algorithms from different initial states.

A new starting state may lead to the globally optimal solution

Simulated annealing

- An alternative to solve the local optima problem
- Permits “bad” moves to states with a lower value hence lets us escape states that lead to a local optima
- **Gradually decreases** the frequency of such moves and their size (parameter controlling it – **temperature**)
Simulated annealing algorithm

Chooses uniformly at random one of the local neighbors of the current state – call it a candidate state

The probability of making a move into that candidate state:

• The probability of moving into a state with a higher objective function value is 1
• The probability of moving into a candidate state with a lower objective function value is
• Let E denotes the objective function value (also called energy).
 \[p(\text{Accept } \text{NEXT}) = e^{\Delta E / T} \]
 where \[\Delta E = E_{\text{NEXT}} - E_{\text{CURRENT}} \]
• The probability is:
 – Proportional to the energy difference

Local neighbors

- Energy $E = 167$
- Energy $E = 145$
- Energy $E = 180$
- Energy $E = 191$
Simulated annealing algorithm

\[\Delta E = E_{\text{NEXT}} - E_{\text{CURRENT}} \]
\[= 145 - 167 = -22 \]
\[p(\text{Accept}) = e^{\Delta E / T} = e^{-22 / T} \]

Sometimes accept!

Simulated annealing algorithm

\[\Delta E = E_{\text{NEXT}} - E_{\text{CURRENT}} \]
\[= 180 - 167 = 13 \]
\[p(\text{Accept}) = 1 \]

Always accept!
Simulated annealing algorithm

The probability of moving into a state with a lower value is

\[p(\text{Accept}) = e^{\Delta E / T} \quad \text{where} \quad \Delta E = E_{\text{NEXT}} - E_{\text{CURRENT}} \]

The probability is:

- **Modulated through a temperature parameter** \(T \):
 - for \(T \to \infty \) the probability of any move approaches 1
 - for \(T \to 0 \) the probability that a state with smaller value is selected goes down and approaches 0

- **Cooling schedule:**
 - Schedule of changes of a parameter \(T \) over iteration steps

Simulated annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to “temperature”
static: current, a node
        next, a node
        T, a “temperature” controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for \( t \leftarrow 1 \) to \( \infty \) do
    \( T ← \text{schedule}[t] \)
    if \( T=0 \) then return current
    next ← a randomly selected successor of current
    \( \Delta E ← \text{Value}[\text{next}] - \text{Value}[\text{current}] \)
    if \( \Delta E > 0 \) then current ← next
    else current ← next only with probability \( e^{\Delta E / T} \)
```

Simulated annealing algorithm

- **Simulated annealing algorithm**
 - developed originally for modeling physical processes (Metropolis et al, 53)

- **Properties:**
 - If T is decreased slowly enough the best configuration (state) is always reached

- **Applications:**
 - VLSI design
 - airline scheduling

Simulated evolution and genetic algorithms

- Limitations of **simulated annealing:**
 - Pursues one state configuration at the time;
 - Changes to configurations are typically local

Can we do better?

- Assume we have two configurations with good values that are quite different
- We expect that the combination of the two individual configurations may lead to a configuration with higher value (Not guaranteed !!!)

This is the idea behind **genetic algorithms** in which we grow a population of candidate solutions generated from combination of previous configuration candidates
Genetic algorithms

Algorithm idea:
• Create a population of random configurations
• Create a new population through:
 – Biased selection of pairs of configurations from the previous population
 – Crossover (combination) of selected pairs
 – Mutation of resulting individuals
• Evolve the population over multiple generation cycles

• Selection of configurations to be combined:
 – Fitness function = value of the objective function
 measures the quality of an individual (a state) in the population

Reproduction process in GA

• Assume that a state configuration is defined by a set variables with two values, represented as 0 or 1