Learning example

- **Problem:** many possible functions $f: X \rightarrow Y$ exists for representing the mapping between x and y
- Which one to choose? Many examples still unseen!
Learning example

- Problem is easier when we make an assumption about the model, say, $f(x) = ax + b + \varepsilon$

 $\varepsilon = N(0, \sigma)$ - random (normally distributed) noise

- Restriction to a linear model is an example of the learning bias

Learning example

- Choosing a parametric model or a set of models is not enough
 Still too many functions $f(x) = ax + b + \varepsilon$ $\varepsilon = N(0, \sigma)$
 - One for every pair of parameters a, b
Fitting the data to the model

- We are interested in finding the **best set** of model parameters

Objective: Find the set of parameters that:
- reduce the misfit between what model suggests and what data say
- Or, (in other words) that explain the data the best

Error function:

Measure of misfit between the data and the model

- Examples of error functions:
 - Mean square error
 \[
 \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
 \]
 - Misclassification error
 Average # of misclassified cases \(y_i \neq f(x_i) \)

Fitting the data to the model

- **Linear regression**
 - Least squares fit with the linear model
 - minimizes
 \[
 \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
 \]
Typical learning

Three basic steps:
• **Select a model** or a set of models (with parameters)

 E.g. \(y = ax + b + \varepsilon \quad \varepsilon = N(0, \sigma) \)

• **Select the error function** to be optimized

 E.g. \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

• **Find the set of parameters optimizing the error function**

 – The model and parameters with the smallest error represent the best fit of the model to the data

But there are problems one must be careful about …

Learning

Problem

• We fit the model based on past experience (past examples seen)

• But ultimately we are interested in learning the mapping that performs well on the whole population of examples

Training data: Data used to fit the parameters of the model

Training error: \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

True (generalization) error (over the whole unknown population):

\[E_{(x,y)}(y - f(x))^2 \quad \text{Expected squared error} \]

Training error tries to approximate the true error !!!!!

Does a good training error imply a good generalization error ?
Overfitting

- Assume we have a set of 10 points and we consider polynomial functions as our possible models

- Fitting a linear function with mean-squares error
- Error is nonzero
Overfitting

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error

Is it always good to minimize the error of the observed data?
Overfitting

- For 10 data points, degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error?

More important: How do we perform on the unseen data?
Overfitting

- Situation when the training error is low and the generalization error is high. Causes of the phenomenon:
 - Model with more degrees of freedom (more parameters)
 - Small data size (as compared to the complexity of model)

How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
 \[E_{(x,y)} (y - f(x))^2 \]

- But it cannot be computed exactly
- **Optimizing (mean) training error can lead to overfit**, i.e.
 training error may not reflect properly the generalization error
 \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

- So how to test the generalization error?
How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
 \[E_{(x,y)}(y - f(x))^2 \]

- But it cannot be computed exactly
- **Optimizing (mean) training error can lead to overfit**, i.e. training error may not reflect properly the generalization error
 \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

- How to test the generalization error?
- Use a separate data set with \(m \) data samples to test it
- **(Mean) test error**
 \[\frac{1}{m} \sum_{j=1}^{m} (y_j - f(x_j))^2 \]

Basic experimental setup to test the learner’s performance

1. Take a dataset \(D \) and divide it into:
 - Training data set
 - Testing data set
2. Use the training set and your favorite ML algorithm to train the learner
3. Test (evaluate) the learner on the testing data set

- The results on the testing set can be used to compare different learners powered with different models and learning algorithms
How to deal with overfitting?

How to make the learner avoid overfitting?
• **Assure sufficient number of samples** in the training set
 – May not be possible
• **Hold some data out of the training set = validation set**
 – Train (fit) on the training set (w/o data held out);
 – Check for the generalization error on the validation set,
 choose the model based on the validation set error
 (cross-validation techniques)
• **Regularization (Occam’s Razor)**
 – Penalize for the model complexity (number of parameters)
 – Explicit preference towards simple models

Design of a learning system.

1. **Data:** \(D = \{d_1, d_2, \ldots, d_n\} \)
2. **Model selection:**
 • **Select a model** or a set of models (with parameters)
 E.g. \(y = ax + b + \epsilon \quad \epsilon = N(0, \sigma) \)
 • **Select the error function** to be optimized
 E.g. \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)
3. **Learning:**
 • **Find the set of parameters optimizing the error function**
 – The model and parameters with the smallest error
4. **Application:**
 • **Apply the learned model**
 – E.g. predict ys for new inputs \(x \) using learned \(f(x) \)
Learning probability distributions

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Unsupervised learning

• **Data:** \(D = \{D_1, D_2, \ldots, D_n\} \)
 \(D_i = x_i \) a vector of attribute values
 – e.g. the description of a patient
 – no specific target attribute we want to predict (no output \(y \))

• **Objective:**
 – learn (describe) relations between attributes, examples

Types of problems:

• **Clustering**
 Group together “similar” examples

• **Density estimation**
 – Model probabilistically the population of examples
Density estimation

Data:
\[D = \{D_1, D_2, \ldots, D_n\} \]
\[D_i = x_i \quad \text{a vector of attribute values} \]

Objective:
try to estimate the underlying true probability distribution over variables \(X \), \(p(X) \), using examples in \(D \)

- true distribution \(p(X) \)
 - n samples \(D = \{D_1, D_2, \ldots, D_n\} \)
 - estimate \(\hat{p}(X) \)

Standard (iid) assumptions:
- Samples are independent of each other
- come from the same (identical) distribution (fixed \(p(X) \))

Learning via parameter estimation

In this lecture we consider **parametric density estimation**

Basic settings:
- A set of random variables \(X = \{X_1, X_2, \ldots, X_d\} \)
- A model of the distribution over variables in \(X \) with parameters \(\Theta \)
- **Data** \(D = \{D_1, D_2, \ldots, D_n\} \)

Objective:
find parameters \(\hat{\Theta} \) that fit the data the best

- What is the best set of parameters?
 - There are various criteria one can apply here.
Parameter estimation. Basic criteria.

- **Maximum likelihood (ML)**

 \[
 \text{maximize } p(D | \Theta, \xi)
 \]

 \(\xi\) - represents prior (background) knowledge

- **Maximum a posteriori probability (MAP)**

 \[
 \text{maximize } p(\Theta | D, \xi)
 \]

 Selects the mode of the posterior

\[
p(\Theta | D, \xi) = \frac{p(D | \Theta, \xi) p(\Theta | \xi)}{p(D | \xi)}
\]

Parameter estimation. Biased coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: \(D\) is a sequence of outcomes \(x_i\) such that

- **head** \(x_i = 1\)
- **tail** \(x_i = 0\)

Model: probability of a head \(\theta\)

 probability of a tail \((1 - \theta)\)

Objective:

We would like to estimate the probability of a head \(\hat{\theta}\)

 from data
Parameter estimation. Example.

• **Assume** the unknown and possibly biased coin
• Probability of the head is θ
• **Data:**

 $ \begin{align*}
 \text{H H T T H H T H T T T H T H T H H H H H H H H T} \\
 & \quad \text{Heads: 15} \\
 & \quad \text{Tails: 10}
 \end{align*} $

What would be your choice of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

$$\hat{\theta} = \frac{15}{25} = 0.6$$

This is the maximum likelihood estimate of the parameter θ
Probability of an outcome

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model:
- probability of a head θ
- probability of a tail $(1-\theta)$

Assume: we know the probability θ

Probability of an outcome of a coin flip x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{1-x_i} \quad \text{Bernoulli distribution}$$

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1-\theta)$ for $x_i = 0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model:
- probability of a head θ
- probability of a tail $(1-\theta)$

Assume: a sequence of independent coin flips

$D = H H T H T H$

(encoded as $D = 110101$)

What is the probability of observing the data sequence D:

$$P(D \mid \theta) = ?$$

- **likelihood of the data**
Probability of a sequence of outcomes.

Data: \(D \) a sequence of outcomes \(x_i \) such that
- **head** \(x_i = 1 \)
- **tail** \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \((1-\theta) \)

Assume: a sequence of coin flips \(D = H H T H T H \)
encoded as \(D = 110101 \)

What is the probability of observing a data sequence \(D \):

\[
P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta
\]

- **likelihood of the data**

Can be rewritten using the Bernoulli distribution:

\[
P(D \mid \theta) = \prod_{i=1}^{6} \theta^{x_i} (1 - \theta)^{(1-x_i)}
\]

Likelihood measure of the goodness of fit to the data.

Assume we do not know the value of the parameter \(\theta \)

Our learning goal:
- Find the parameter \(\theta \) that fits the data \(D \) the best?

One solution to the “best”: Maximize the likelihood

\[
P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)}
\]

Intuition:
- more likely are the data given the model, the better is the fit

Note:
- Instead an error function that measures how bad the fit is we have a measure that tells us how well the data fit:

\[
Error(D, \theta) = -P(D \mid \theta)
\]
Maximum likelihood (ML) estimate.

Likelihood of data:
\[P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} \]

Maximum likelihood estimate
\[\theta_{ML} = \arg \max_{\theta} P(D \mid \theta, \xi) \]

Optimize log-likelihood (the same as maximizing likelihood)
\[l(D, \theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} = \sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log(1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log(1-\theta) \sum_{i=1}^{n} (1-x_i) \]

\[N_1 \] - number of heads seen \hspace{1cm} \[N_2 \] - number of tails seen
Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is θ
• Data:
 H H T T H H T H T T T H T H T H H H H T H H H H T
 – Heads: 15
 – Tails: 10

What is the ML estimate of the probability of a head and a tail?

\[
\begin{align*}
\theta_{\text{ML}} &= \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6 \\
\theta_{\text{ML}} &= (1 - \theta_{\text{ML}}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4
\end{align*}
\]