First-order logic

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Administration announcements

Midterm:
• Thursday, October 28, 2010
• In-class
• Closed book
Limitations of propositional logic

World we want to represent and reason about consists of a number of objects with variety of properties and relations among them.

Propositional logic:
- Represents statements about the world without reflecting this structure and without modeling these entities explicitly.

Consequence:
- Some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
 - Statements about similar objects, relations
 - Statements referring to groups of objects.

Example:
Seniority of people domain

For inferences we need:

- \(\text{John is older than Mary} \land \text{Mary is older than Paul} \)
- \(\Rightarrow \text{John is older than Paul} \)
- \(\text{Jane is older than Mary} \land \text{Mary is older than Paul} \)
- \(\Rightarrow \text{Jane is older than Paul} \)

Problem: if we have many people and facts about their seniority, we need represent many rules like this to allow inferences.

Possible solution: ??

Limitations of propositional logic

• **Statements about similar objects and relations needs to be enumerated**

• **Example:** Seniority of people domain

 For inferences we need:

 \[\text{John is older than Mary} \land \text{Mary is older than Paul} \Rightarrow \text{John is older than Paul}\]

 \[\text{Jane is older than Mary} \land \text{Mary is older than Paul} \Rightarrow \text{Jane is older than Paul}\]

• **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences

• **Possible solution:** introduce variables

 \[\text{Pers}_A \text{ is older than } \text{Pers}_B \land \text{Pers}_B \text{ is older than } \text{Pers}_C \Rightarrow \text{Pers}_A \text{ is older than } \text{Pers}_C\]

Limitations of propositional logic

• **Statements referring to groups of objects require exhaustive enumeration of objects**

• **Example:**

 Assume we want to express *Every student likes vacation*

 Doing this in propositional logic would require to include statements about every student

 \[\text{John likes vacation} \land\]

 \[\text{Mary likes vacation} \land\]

 \[\text{Ann likes vacation} \land\]

 \[\ldots\]

• **Solution:** Allow quantification in statements
First-order logic (FOL)

- More expressive than **propositional logic**

- **Eliminates deficiencies of PL by:**
 - Representing objects, their properties, relations and statements about them;
 - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object
 - Introducing quantifiers allowing us to make statements over groups objects without the need to represent each of them separately

Logic

Logic is defined by:

- **A set of sentences**
 - A sentence is constructed from a set of primitives according to syntax rules.

- **A set of interpretations**
 - An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.

- **The valuation (meaning) function** V
 - Assigns a truth value to a given sentence under some interpretation

$$ V : \text{sentence} \times \text{interpretation} \rightarrow \{ \text{True, False} \} $$
First-order logic. Syntax.

Term – a syntactic entity for representing objects

Terms in FOL:
• **Constant symbols**: represent specific objects
 – E.g. John, France, car89
• **Variables**: represent objects of a certain type (type = domain of discourse)
 – E.g. x, y, z
• **Functions** applied to one or more terms
 – E.g. \(\text{father-of}(\text{John}) \)
 \(\text{father-of(father-of(John))} \)

First order logic. Syntax.

Sentences in FOL:
• **Atomic sentences**:
 – A **predicate symbol** applied to 0 or more terms
 Examples:
 \(\text{Red(car12)} \),
 \(\text{Sister(Amy, Jane)} \);
 \(\text{Manager(father-of(John))} \);

 – \(t1 = t2 \) **equivalence** of terms
 Example:
 \(\text{John} = \text{father-of(Peter)} \)
First order logic. Syntax.

Sentences in FOL:
• Complex sentences:
 • Assume ϕ, ψ are sentences in FOL. Then:
 - $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \Rightarrow \psi)$, $(\phi \Leftrightarrow \psi)$, $\neg \psi$
 and
 - $\forall x \phi$, $\exists y \phi$
 are sentences

Symbols \exists, \forall
- stand for the existential and the universal quantifier

Semantics. Interpretation.

An interpretation I is defined by a mapping constants, predicates and function to the domain of discourse D or relations on D
• domain of discourse: a set of objects in the world we represent and refer to;

An interpretation I maps:
• Constant symbols to objects in D
 $I(John) = \hat{\text{John}}$
• Predicate symbols to relations, properties on D
 $I(\text{brother}) = \{ \langle \hat{\text{John}}, \hat{\text{Mike}} \rangle; \langle \hat{\text{Mike}}, \hat{\text{John}} \rangle; \ldots \}$
• Function symbols to functional relations on D
 $I(\text{father-of}) = \{ \langle \hat{\text{John}}, \hat{\text{Mike}} \rangle \rightarrow \hat{\text{Michael}}; \langle \hat{\text{Mike}}, \hat{\text{John}} \rangle \rightarrow \hat{\text{Michael}}; \ldots \}$
Semantics of sentences.

Meaning (evaluation) function:

\[V : \text{sentence} \times \text{interpretation} \rightarrow \{ \text{True}, \text{False} \} \]

A predicate \(\text{predicate}(\text{term-1}, \text{term-2}, \text{term-3}, \text{term-n}) \) is true for the interpretation \(I \), iff the objects referred to by \(\text{term-1}, \text{term-2}, \text{term-3}, \text{term-n} \) are in the relation referred to by \(\text{predicate} \).

\[I(\text{John}) = \begin{cases} \text{John} \\ \text{Paul} \end{cases} \]

\[I(\text{brother}) = \{ \langle \text{John}, \text{Paul} \rangle; \langle \text{John}, \text{John} \rangle; \cdots \} \]

\[\text{brother}(\text{John}, \text{Paul}) = \langle \text{John}, \text{Paul} \rangle \in I(\text{brother}) \]

\[V(\text{brother}(\text{John}, \text{Paul}), I) = \text{True} \]

Semantics of sentences.

- **Equality**
 \[V(\text{term-1} = \text{term-2}, I) = \text{True} \]
 Iff \(I(\text{term-1}) = I(\text{term-2}) \)

- **Boolean expressions**: standard
 E.g. \[V(\text{sentence-1} \lor \text{sentence-2}, I) = \text{True} \]
 Iff \(V(\text{sentence-1}, I) = \text{True} \) or \(V(\text{sentence-2}, I) = \text{True} \)

- **Quantifications**
 \[V(\forall x \phi, I) = \text{True} \]
 substitution of \(x \) with \(d \)
 Iff for all \(d \in D \) \(V(\phi, I[x/d]) = \text{True} \)

 \[V(\exists x \phi, I) = \text{True} \]
 Iff there is a \(d \in D \), s.t. \(V(\phi, I[x/d]) = \text{True} \)
Sentences with quantifiers

• **Universal quantification**

 All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

\[\forall x \text{ smart}(x) \]
Sentences with quantifiers

- **Universal quantification**

 All Upitt students are smart

 \[\forall x \text{ smart}(x) \]

- Assume the universe of discourse of x are Upitt students
 \[\forall x \text{ smart}(x) \]

- Assume the universe of discourse of x are students
 \[\forall x \text{ at}(x, \text{Upitt}) \Rightarrow \text{smart}(x) \]
Sentences with quantifiers

• **Universal quantification**

 All Upitt students are smart

 $$\forall x \text{ smart}(x)$$

• Assume the universe of discourse of x are Upitt students
 $$\forall x \text{ smart}(x)$$

• Assume the universe of discourse of x are students
 $$\forall x \text{ at}(x, \text{ Upitt }) \Rightarrow \text{ smart}(x)$$

• Assume the universe of discourse of x are people
 $$\forall x \text{ student}(x) \land \text{ at}(x, \text{ Upitt }) \Rightarrow \text{ smart}(x)$$
Sentences with quantifiers

- **Universal quantification**

 \[\forall x \ smart(x) \]

 All Upitt students are smart

- Assume the universe of discourse of \(x \) are Upitt students

- Assume the universe of discourse of \(x \) are students

- Assume the universe of discourse of \(x \) are people

 \[\forall x \ student(x) \wedge at(x,Upitt) \Rightarrow smart(x) \]

 Typically the universal quantifier connects with an implication

- **Existential quantification**

 \[\exists x \ smart(x) \]

 Someone at CMU is smart

- Assume the universe of discourse of \(x \) are CMU affiliates
Sentences with quantifiers

- **Existential quantification**

 Someone at CMU is smart

 - Assume the universe of discourse of x are CMU affiliates
 \[\exists x \text{ smart}(x) \]

 - Assume the universe of discourse of x are people
Sentences with quantifiers

• Existential quantification

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

\[\exists x \ smart(x) \]

• Assume the universe of discourse of x are people

\[\exists x \ at(x,CMU) \land smart(x) \]

Typically the existential quantifier connects with a conjunction
Translation with quantifiers

• Assume two predicates S(x) and P(x)

Universal statements typically tie with implications
• All S(x) is P(x)
 – ∀x (S(x) → P(x))
• No S(x) is P(x)
 – ∀x(S(x) → ¬P(x))

Existential statements typically tie with conjunction
• Some S(x) is P(x)
 – ∃x (S(x) ∧ P(x))
• Some S(x) is not P(x)
 – ∃x (S(x) ∧ ¬P(x))

Nested quantifiers

• More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic.

Example:
• There is a person who loves everybody.
• Translation:
 – Assume:
 • Variables x and y denote people
 • A predicate L(x,y) denotes: “x loves y”
• Then we can write in the predicate logic:
 ?
Nested quantifiers

- More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic.

Example:
- There is a person who loves everybody.
- Translation:
 - Assume:
 - Variables \(x \) and \(y \) denote people
 - A predicate \(L(x,y) \) denotes: “\(x \) loves \(y \)”
 - Then we can write in the predicate logic:
 \[
 \exists x \forall y \ L(x,y)
 \]

Translation exercise

Suppose:
- Variables \(x,y \) denote people
- \(L(x,y) \) denotes “\(x \) loves \(y \)”.

Translate:
- Everybody loves Raymond.
Translation exercise

Suppose:
– Variables x,y denote people
– L(x,y) denotes “x loves y”.

Translate:
• Everybody loves Raymond. \(\forall x \ L(x,\text{Raymond}) \)
• Everybody loves somebody. \(?\)
Translation exercise

Suppose:
 – Variables x, y denote people
 – L(x, y) denotes “x loves y”.

Translate:
• Everybody loves Raymond. \(\forall x \ L(x, \text{Raymond}) \)
• Everybody loves somebody. \(\forall x \exists y \ L(x, y) \)
• There is somebody whom everybody loves. \(\exists y \forall x \ L(x, y) \)
• There is somebody who Raymond doesn't love. ?

Translation exercise

Suppose:
 – Variables x, y denote people
 – L(x, y) denotes “x loves y”.

Translate:
• Everybody loves Raymond. \(\forall x \ L(x, \text{Raymond}) \)
• Everybody loves somebody. \(\forall x \exists y \ L(x, y) \)
• There is somebody whom everybody loves. \(\exists y \forall x \ L(x, y) \)
• There is somebody who Raymond doesn't love. \(\exists y \neg L(\text{Raymond}, y) \)
• There is somebody whom no one loves. ?
Translation exercise

Suppose:
- Variables x, y denote people
- L(x, y) denotes “x loves y”.

Translate:
- Everybody loves Raymond. $\forall x \ L(x, \text{Raymond})$
- Everybody loves somebody. $\forall x \exists y \ L(x, y)$
- There is somebody whom everybody loves. $\exists y \forall x \ L(x, y)$
- There is somebody who Raymond doesn't love. $\exists y \neg L(\text{Raymond}, y)$
- There is somebody whom no one loves. $\exists y \ \forall x \neg L(x, y)$

Order of quantifiers

- **Order of quantifiers of the same type does not matter**

 For all x and y, if x is a parent of y then y is a child of x

 $\forall x, y \ parent \ (x, y) \Rightarrow child \ (y, x)$

 $\forall y, x \ parent \ (x, y) \Rightarrow child \ (y, x)$

- **Order of different quantifiers changes the meaning**

 $\forall x \exists y \ loves \ (x, y)$
Order of quantifiers

• Order of quantifiers of the same type does not matter

 For all x and y, if x is a parent of y then y is a child of x

 $\forall x, y \text{ parent } (x, y) \Rightarrow \text{ child } (y, x)$

 $\forall y, x \text{ parent } (x, y) \Rightarrow \text{ child } (y, x)$

• Order of different quantifiers changes the meaning

 $\forall x \exists y \text{ loves } (x, y)$

 Everybody loves somebody

 $\exists y \forall x \text{ loves } (x, y)$

 There is someone who is loved by everyone
Connections between quantifiers

Everyone likes ice cream

∀ x likes (x, IceCream)
Connections between quantifiers

Everyone likes ice cream

\(\forall x \text{ likes} (x, \text{IceCream}) \)

Is it possible to convey the same meaning using an existential quantifier ?

There is no one who does not like ice cream

\(\exists x \lnot \text{ likes} (x, \text{IceCream}) \)

A universal quantifier in the sentence can be expressed using an existential quantifier !!!
Connections between quantifiers

Someone likes ice cream

Is it possible to convey the same meaning using a universal quantifier?
Connections between quantifiers

Someone likes ice cream

\[\exists x \text{ likes } (x, \text{IceCream}) \]

Is it possible to convey the same meaning using a universal quantifier?

Not everyone does not like ice cream

\[\neg \forall x \neg \text{likes } (x, \text{IceCream}) \]

An existential quantifier in the sentence can be expressed using a universal quantifier!!!

Representing knowledge in FOL

Example:

Kinship domain

- **Objects:** people

 John, *Mary*, *Jane*, …

- **Properties:** gender

 Male (x), *Female* (x)

- **Relations:** parenthood, brotherhood, marriage

 Parent (x, y), *Brother* (x, y), *Spouse* (x, y)

- **Functions:** mother-of (one for each person x)

 MotherOf (x)
Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

- Male and female are disjoint categories
 \[\forall x \text{ Male} (x) \iff \neg \text{Female} (x) \]

- Parent and child relations are inverse
 \[\forall x, y \text{ Parent} (x, y) \iff \text{Child} (y, x) \]

- A grandparent is a parent of parent
 \[\forall g, c \text{ Grandparent}(g, c) \iff \exists p \text{ Parent}(g, p) \land \text{Parent}(p, c) \]

- A sibling is another child of one’s parents
 \[\forall x, y \text{ Sibling} (x, y) \iff (x \neq y) \land \exists p \text{ Parent} (p, x) \land \text{Parent} (p, y) \]

- And so on ….