CS 1571 Introduction to AI
Lecture 7

Informed search methods

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcements

• Homework assignment 2 is out
 – Due on Thursday, September 20, 2007
 – Two parts:
 • Pen and pencil part
 • Programming part – heuristics for (Puzzle 8)

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/
Evaluation-function driven search

• A search strategy can be defined in terms of a node evaluation function

• Evaluation function
 – Denoted $f(n)$
 – Defines the desirability of a node to be expanded next

• Evaluation-function driven search: expand the node (state) with the best evaluation-function value

• Implementation: priority queue with nodes in the decreasing order of their evaluation function value

Uniform cost search

• Uniform cost search (Dijkstra’s shortest path):
 – A special case of the evaluation-function driven search
 \[f(n) = g(n) \]

• Path cost function $g(n)$;
 – path cost from the initial state to n

• Uniform-cost search:
 – Can handle general minimum cost path-search problem:
 – weights or costs associated with operators (links).

• Note: Uniform cost search relies on the problem definition only
 – It is an uninformed search method
Best-first search

Best-first search
• incorporates a heuristic function, \(h(n) \), into the evaluation function \(f(n) \) to guide the search.

Heuristic function:
• Measures a potential of a state (node) to reach a goal
• Typically in terms of some distance to a goal estimate

Example of a heuristic function:
• Assume a shortest path problem with city distances on connections
• Straight-line distances between cities give additional information we can use to guide the search

Example: traveler problem with straight-line distance information
• Straight-line distances give an estimate of the cost of the path between the two cities
Best-first search

Best-first search
- incorporates a **heuristic function**, $h(n)$, into the evaluation function $f(n)$ to guide the search.
- **heuristic function**: measures a potential of a state (node) to reach a goal

Special cases (differ in the design of evaluation function):
- **Greedy search**
 $$f(n) = h(n)$$
- **A* algorithm**
 $$f(n) = g(n) + h(n)$$
 + iterative deepening version of A*: IDA*

Greedy search method

- Evaluation function is equal to the heuristic function
 $$f(n) = h(n)$$
- **Idea**: the node that seems to be the closest to the goal is expanded first
Greedy search

\[f(n) = h(n) \]

![Diagram showing Greedy search with nodes and edges labeled with distances.](image-url)
Greedy search

\[f(n) = h(n) \]

![Greedy search diagram](image)
Properties of greedy search

• **Completeness:** No.
 We can loop forever. Nodes that seem to be the best choices can lead to cycles. Elimination of state repeats can solve the problem.

• **Optimality:** No.
 Even if we reach the goal, we may be biased by a bad heuristic estimate. Evaluation function disregards the cost of the path built so far.

• **Time complexity:** \(O(b^m) \)
 Worst case !!! But often better!

• **Memory (space) complexity:** \(O(b^m) \)
 Often better!
Example: traveler problem with straight-line distance information

- Greedy search result

Example: traveler problem with straight-line distance information

- Greedy search and optimality
A* search

- The problem with the **greedy search** is that it can keep expanding paths that are already very expensive.
- The problem with the **uniform-cost search** is that it uses only past exploration information (path cost), no additional information is utilized.
- **A* search**
 \[f(n) = g(n) + h(n) \]

 - \(g(n) \) - cost of reaching the state
 - \(h(n) \) - estimate of the cost from the current state to a goal
 - \(f(n) \) - estimate of the path length
- **Additional A* condition**: admissible heuristic
 \[h(n) \leq h^*(n) \quad \text{for all } n \]

A* search example

\[f(n) \]

![A* search example diagram](image-url)
A* search example

\[f(n) \]

\[f(n) = h(n) + g(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]

\[g(n) \]

\[f(n) \]

\[h(n) \]
A* search example

<table>
<thead>
<tr>
<th>Node</th>
<th>f(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Sibiu</td>
<td>393</td>
</tr>
<tr>
<td>Timisoara</td>
<td>447</td>
</tr>
<tr>
<td>Fagaras</td>
<td>417</td>
</tr>
<tr>
<td>Bucharest</td>
<td>418</td>
</tr>
<tr>
<td>Timisoara</td>
<td>413</td>
</tr>
<tr>
<td>Oradea</td>
<td>526</td>
</tr>
<tr>
<td>Craiova</td>
<td>526</td>
</tr>
<tr>
<td>Sibiu</td>
<td>553</td>
</tr>
<tr>
<td>Pitesti</td>
<td>415</td>
</tr>
<tr>
<td>Vitea</td>
<td>447</td>
</tr>
<tr>
<td>Oradea</td>
<td>553</td>
</tr>
<tr>
<td>Craiova</td>
<td>553</td>
</tr>
<tr>
<td>Sibiu</td>
<td>553</td>
</tr>
<tr>
<td>Pitesti</td>
<td>415</td>
</tr>
<tr>
<td>Sibiu</td>
<td>553</td>
</tr>
<tr>
<td>Arad</td>
<td>646</td>
</tr>
<tr>
<td>Zerind</td>
<td>449</td>
</tr>
<tr>
<td>Fagaras</td>
<td>417</td>
</tr>
<tr>
<td>Bucharest</td>
<td>418</td>
</tr>
<tr>
<td>Timisoara</td>
<td>447</td>
</tr>
<tr>
<td>Zerind</td>
<td>417</td>
</tr>
<tr>
<td>Oradea</td>
<td>526</td>
</tr>
<tr>
<td>Craiova</td>
<td>526</td>
</tr>
<tr>
<td>Sibiu</td>
<td>553</td>
</tr>
<tr>
<td>Pitesti</td>
<td>415</td>
</tr>
<tr>
<td>Sibiu</td>
<td>553</td>
</tr>
<tr>
<td>Arad</td>
<td>646</td>
</tr>
</tbody>
</table>

queue

CS 1571 Intro to AI M. Hauskrecht
A* search example

Bucharest 418
Timisoara 447
Zerind 449
Oradea 526
Craiova 526
Sibiu 553
Rimnicu V. 607
Arad 646

Goal!!
Properties of A* search

- Completeness: Yes.
- Optimality: ?
- Time complexity: ?
- Memory (space) complexity: ?

Optimality of A*

- In general, a heuristic function $h(n)$:
 - It can overestimate, be equal or underestimate the true distance of a node to the goal $h^*(n)$
- Is the A* optimal for an arbitrary heuristic function?
Example: traveler problem with straight-line distance information

- Admissible heuristics

\[
f(n) = 220 + 400 = 620
\]

\[
f(n) = 239 + 178 = 417
\]

Example: traveler problem with straight-line distance information

- Admissible heuristics

\[
f(n) = 220 + 400 = 620
\]

\[
f(n) = 239 + 178 = 417
\]
Example: traveler problem with straight-line distance information

- **Admissible heuristics**
 - Total path: 450
 - Is suboptimal

Optimality of A*

- In general, a heuristic function \(h(n) \):
 - Can overestimate, be equal or underestimate the true distance of a node to the goal \(h^*(n) \)
- Is the A* optimal for an arbitrary heuristic function?
 - **No!**
Optimality of A*

• In general, a heuristic function $h(n)$:
 Can overestimate, be equal or underestimate the true distance of a node to the goal $h^*(n)$

• **Admissible heuristic condition**
 – *Never overestimate the distance to the goal!!!*

 $$h(n) \leq h^*(n) \text{ for all } n$$

Example: the straight-line distance in the travel problem never overestimates the actual distance

Is A* search with an admissible heuristic is optimal??

Optimality of A* (proof)

• Let G_1 be the optimal goal (with the minimum path distance).
 Assume that we have a sub-optimal goal G_2. Let n be a node that is on the optimal path and is in the queue together with G_2

Then:

$$f(G_2) = g(G_2) \quad \text{ since } h(G_2) = 0$$
$$> g(G_1) \quad \text{ since } G_2 \text{ is suboptimal}$$
$$\geq f(n) \quad \text{ since } h \text{ is admissible}$$

And thus A* **never selects G2 before n**
Properties of A* search

- Completeness: Yes.
- Optimality: Yes (with the admissible heuristic)
- Time complexity:
 - \(f(n) \) smaller than the cost of the optimal path \(g^* \)
- Memory (space) complexity:
 - Same as time complexity (all nodes in the memory)
Admissible heuristics

- Heuristics are designed based on relaxed version of problems
- **Example:** the 8-puzzle problem

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

- **Admissible heuristics:**
 1. number of misplaced tiles
 2. Sum of distances of all tiles from their goal positions (Manhattan distance)

Heuristic 1: number of misplaced tiles

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

\[h(n) \text{ for the initial position: } ? \]
Admissible heuristics

Heuristics 1: number of misplaced tiles

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

$h(n)$ for the initial position: 7

Admissible heuristics

- **Heuristic 2:** Sum of distances of all tiles from their goal positions (Manhattan distance)

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

$h(n)$ for the initial position:
Admissible heuristics

- **Heuristic 2**: Sum of distances of all tiles from their goal positions (Manhattan distance)

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5 18</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

\[h(n) \text{ for the initial position:} \]
\[2 + 3 + 3 + 1 + 1 + 2 + 0 + 2 = 14 \]

For tiles: 1 2 3 4 5 6 7 8

Admissible heuristics

- We can have multiple admissible heuristics for the same problem
- **Dominance**: Heuristic function \(h_1 \) dominates \(h_2 \) if
 \[\forall n \ h_1(n) \geq h_2(n) \]
- **Combination**: two or more admissible heuristics can be combined to give a new admissible heuristics
 - Assume two admissible heuristics \(h_1, h_2 \)

 Then: \[h_3(n) = \max(h_1(n), h_2(n)) \]
 is admissible
IDA

Iterative deepening version of A

- Progressively increases the **evaluation function limit** (instead of the depth limit)
- Performs **limited-cost depth-first search** for the current evaluation function limit
 - Keeps expanding nodes in the depth first manner up to the evaluation function limit
- **Problem**: the amount by which the evaluation limit should be progressively increased

IDA

Problem: the amount by which the evaluation limit should be progressively increased

Solutions:

1. **peak over the previous step boundary** to guarantee that in the next cycle some number of nodes are expanded
2. **Increase the limit by a fixed cost increment** – say ε

Cost limit = $k \varepsilon$
IDA*

Solution 1: peak over the previous step boundary to guarantee that in the next cycle more nodes are expanded

Properties:
- the choice of the new cost limit influences how many nodes are expanded in each iteration
- Assume I choose a limit such that at least 5 new nodes are examined in the next DFS run
- What is the problem here?

IDA*

Solution 1: peak over the previous step boundary to guarantee that in the next cycle more nodes are expanded

Properties:
- the choice of the new cost limit influences how many nodes are expanded in each iteration
- Assume I choose a limit such that at least 5 new nodes are examined in the next DFS run
- What is the problem here?
 - **Fix:** ?
IDA

Solution 1: peak over the previous step boundary to guarantee that in the next cycle more nodes are expanded

Properties:
- the choice of the new cost limit influences how many nodes are expanded in each iteration
- Assume I choose a limit such that at least 5 new nodes are examined in the next DFS run
- What is the problem here?
 - We may find a sub-optimal solution
 - **Fix:** complete the search up to the limit to find the best

Solution 2: Increase the limit by a fixed cost increment (ε)

Properties:
- What is bad?

\[
\text{Cost limit} = k \varepsilon
\]
Solution 2: Increase the limit by a fixed cost increment (ε)

Properties:
- What is bad? Too many or too few nodes expanded – no control of the number of nodes
- What is the quality of the solution?
 - The solution differs by $< \varepsilon$

Cost limit = $k \varepsilon$