Propositional logic

Knowledge-based agent

- Knowledge base (KB):
 - A set of sentences that describe facts about the world in some formal (representational) language
 - Domain specific
- Inference engine:
 - A set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. Inferences typically require search.
 - Domain independent
Knowledge representation

- The objective of knowledge representation is to express the knowledge about the world in a computer-tractable form.

- Key aspects of knowledge representation languages:
 - **Syntax:** describes how sentences are formed in the language.
 - **Semantics:** describes the meaning of sentences, what is it the sentence refers to in the real world.
 - **Computational aspect:** describes how sentences and objects are manipulated in concordance with semantical conventions.

 Many KB systems rely on some variant of logic.

Logic

A formal language for expressing knowledge and ways of reasoning. **Logic** is defined by:

- **A set of sentences**
 - A sentence is constructed from a set of primitives according to syntax rules.

- **A set of interpretations**
 - An interpretation gives a semantic to primitives. It associates primitives with values.

- **The valuation (meaning) function** V
 - Assigns a value (typically the truth value) to a given sentence under some interpretation.

 $V: \text{sentence} \times \text{interpretation} \rightarrow \{\text{True}, \text{False}\}$
Propositional logic. Syntax

- Formally propositional logic P:
 - Is defined by Syntax+interpretation+semantics of P

Syntax:
- Symbols (alphabet) in P:
 - Constants: True, False
 - Propositional symbols
 Examples:
 - P
 - Pitt is located in the Oakland section of Pittsburgh.
 - It rains outside, etc.
 - A set of connectives:
 \(\neg, \land, \lor, \Rightarrow, \Leftarrow \)

Sentences in the propositional logic:
- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - \(P, Q \) or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via connectives
 - If \(A, B \) are sentences then
 \[\neg A \quad (A \land B) \quad (A \lor B) \quad (A \Rightarrow B) \quad (A \Leftarrow B) \]
 or \((A \lor B) \land (A \lor \neg B) \)
 are sentences
Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

1. **Interpretation of propositional symbols and constants**
 - Semantics of atomic sentences

2. **Through the meaning of connectives**
 - Meaning (semantics) of composite sentences

Semantic: propositional symbols

A **propositional symbol**
- a statement about the world that is either true or false

Examples:
- *Pitt is located in the Oakland section of Pittsburgh*
- *It rains outside*
- *Light in the room is on*

- An **interpretation** maps symbols to one of the two values:
 True (T), or *False* (F), depending on whether the symbol is satisfied in the world

 I: *Light in the room is on* -> *True*, *It rains outside* -> *False*
 I’: *Light in the room is on* -> *False*, *It rains outside* -> *False*
Semantic: propositional symbols

The meaning (value) of the propositional symbol for a specific interpretation is given by its interpretation.

\[I: \text{Light in the room is on} \rightarrow \text{True, It rains outside} \rightarrow \text{False} \]

\[V(\text{Light in the room is on}, I) = \text{True} \]

\[V(\text{It rains outside}, I) = \text{False} \]

\[I': \text{Light in the room is on} \rightarrow \text{False, It rains outside} \rightarrow \text{False} \]

\[V(\text{Light in the room is on}, I') = \text{False} \]

Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding True,False value

\[V(\text{True}, I) = \text{True} \]

\[V(\text{False}, I) = \text{False} \]

For any interpretation \(I \)
Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>$\neg P$</td>
<td>$P \land Q$</td>
<td>$P \lor Q$</td>
<td>$P \Rightarrow Q$</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- $p = $ It is sunny this afternoon
- $q = $ it is colder than yesterday
- $r = $ We will go swimming
- $s = $ we will take a canoe trip
- $t = $ We will be home by sunset
Translation

Assume the following sentences:
- It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:
- \(p \) = It is sunny this afternoon
- \(q \) = it is colder than yesterday
- \(r \) = We will go swimming
- \(s \) = we will take a canoe trip
- \(t \) = We will be home by sunset

\[p \to q \]
\[\neg p \land q \]
\[r \to p \]
Translation

Assume the following sentences:

• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q\)
• We will go swimming only if it is sunny. \(r \rightarrow p\)
• If we do not go swimming then we will take a canoe trip. \(\neg r \rightarrow s\)
• If we take a canoe trip, then we will be home by sunset. \(s \rightarrow t\)

Denote:

• \(p\) = It is sunny this afternoon
• \(q\) = it is colder than yesterday
• \(r\) = We will go swimming
• \(s\) = we will take a canoe trip
• \(t\) = We will be home by sunset
Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

- **Contradiction** (always *False*)
 \[P \land \neg P \]

- **Tautology** (always *True*)
 \[P \lor \neg P \]

\[
\begin{align*}
\neg (P \lor Q) &\iff (\neg P \land \neg Q) \\
\neg (P \land Q) &\iff (\neg P \lor \neg Q)
\end{align*}
\]

DeMorgan’s Laws

Model, validity and satisfiability

- A **model** (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is not satisfiable (leads to contradiction)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>((P \lor Q) \land \neg Q) \Rightarrow P</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

- A **model (in logic):** An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>((P \lor Q) \land \neg Q \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Satisfiable sentence

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>((P \lor Q) \land \neg Q \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

- **A model (in logic):** An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is **True** in all interpretations
 - i.e., if its negation is not satisfiable (leads to contradiction)

<table>
<thead>
<tr>
<th>Satisfiable sentence</th>
<th>Valid sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entailment

- **Entailment** reflects the relation of one fact in the world following from the others

 ![Diagram](diagram.png)

 - Entailment $KB \models \alpha$
 - Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
Sound and complete inference.

Inference is a process by which conclusions are reached.
- We want to implement the inference process on a computer !!

Assume an inference procedure i that
- derives a sentence α from the KB: $KB \vdash_i \alpha$

Properties of the inference procedure in terms of entailment
- **Soundness**: An inference procedure is sound
 If $KB \vdash_i \alpha$ then it is true that $KB \models \alpha$
- **Completeness**: An inference procedure is complete
 If $KB \models \alpha$ then it is true that $KB \vdash_i \alpha$

Logical inference problem

Logical inference problem:
- **Given**:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- **Does a KB semantically entail α?** $KB \models \alpha$?
In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?
Answer: Yes. Logical inference problem for the propositional logic is **decidable**.
Solving logical inference problem

In the following:

How to design the procedure that answers:

\[KB \models \alpha \ ? \]

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

Truth-table approach

Problem: \[KB \models \alpha \ ? \]

- We need to check all possible interpretations for which the KB is true (models of KB) whether \(\alpha \) is true for each of them

Truth table:

- enumerates truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

Example:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>(P \iff Q)</th>
<th>((P \lor \neg Q) \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
Truth-table approach

Problem: \(KB \models \alpha \)?
- We need to check all possible interpretations for which the KB is true (models of KB) whether \(\alpha \) is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>(P \iff Q)</th>
<th>((P \lor \neg Q) \land Q)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

Truth-table approach

Problem: \(KB \models \alpha \)?
- We need to check all possible interpretations for which the KB is true (models of KB) whether \(\alpha \) is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>(P \iff Q)</th>
<th>((P \lor \neg Q) \land Q)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

\(\checkmark \)
Truth-table approach

A two steps procedure:
1. Generate table for all possible interpretations
2. Check whether the sentence \(\alpha \) evaluates to true whenever \(KB \) evaluates to true

Example: \(KB = (A \lor C) \land (B \lor \neg C) \quad \alpha = (A \lor B) \)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A \lor C</td>
<td>(B \lor \neg C)</td>
<td>KB</td>
<td>\alpha</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td>---------------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>
Truth-table approach

A two steps procedure:
1. Generate table for all possible interpretations
2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C) \quad \alpha = (A \lor B)$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$(B \lor \neg C)$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

KB entails α

- The truth-table approach is sound and complete for the propositional logic!!
Limitations of the truth table approach.

\[KB \models \alpha \]

What is the computational complexity of the truth table approach?

- Exponential in the number of the proposition symbols

\[2^n \] Rows in the table has to be filled
Limitations of the truth table approach.

\[KB \models \alpha \ ? \]

What is the computational complexity of the truth table approach?

Exponential in the number of the proposition symbols

\[2^n \] Rows in the table has to be filled

But typically only for a small subset of rows the KB is true

Problem with the truth table approach:

- the truth table is \textit{exponential} in the number of propositional symbols (we checked all assignments)
- KB is true on only a smaller subset
Limitation of the truth table approach.

\[KB \models \alpha \]

Problem with the truth table approach:
- the truth table is exponential in the number of propositional symbols (we checked all assignments)
- KB is true only on a small subset interpretations

How to make the process more efficient?

Inference rules approach.

\[KB \models \alpha \]

Problem with the truth table approach:
- the truth table is exponential in the number of propositional symbols (we checked all assignments)
- KB is true on only a smaller subset

How to make the process more efficient?
Solution: check only entries for which KB is True.
This is the idea behind the inference rules approach

Inference rules:
- Represent sound inference patterns repeated in inferences
- Can be used to generate new (sound) sentences from the existing ones
Inference rules for logic

• **Modus ponens**

\[
\begin{align*}
A \Rightarrow B, \quad A & \quad \text{(premise)} \\
\hline
\end{align*}
\]

\[B \quad \text{(conclusion)}\]

• If both sentences in the premise are true then conclusion is true.
• The modus ponens inference rule is **sound**.
 – We can prove this through the truth table.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A ⇒ B</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Inference rules for logic

• **And-elimination**

\[
\begin{align*}
A_1 \wedge A_2 \wedge \ldots \wedge A_n & \quad \text{(premise)} \\
\hline
A_i \quad \text{(conclusion)}
\end{align*}
\]

• **And-introduction**

\[
\begin{align*}
A_1, A_2, \ldots, A_n & \quad \text{(premise)} \\
\hline
A_1 \wedge A_2 \wedge \ldots \wedge A_n \quad \text{(conclusion)}
\end{align*}
\]

• **Or-introduction**

\[
\begin{align*}
A_i & \quad \text{(premise)} \\
\hline
A_1 \lor A_2 \lor \ldots \lor A_i \lor \ldots \lor A_n \quad \text{(conclusion)}
\end{align*}
\]
Inference rules for logic

- **Elimination of double negation**
 \[\neg \neg A \quad \Rightarrow \quad A \]

- **Unit resolution**
 \[A \lor B, \quad \neg A \quad \Rightarrow \quad B \]

- **Resolution**
 \[A \lor B, \quad \neg B \lor C \quad \Rightarrow \quad A \lor C \]

- All of the above inference rules are sound. We can prove this through the truth table, similarly to the **modus ponens** case.

Example. Inference rules approach.

KB: \(P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \)
Theorem: \(S \)

1. \(P \land Q \)
2. \(P \Rightarrow R \)
3. \((Q \land R) \Rightarrow S \)
Example. Inference rules approach.

KB: $P \land Q \quad P \implies R \quad (Q \land R) \implies S \quad \text{Theorem: } S$

1. $P \land Q$
2. $P \implies R$
3. $(Q \land R) \implies S$
4. P \hspace{1cm} \text{From 1 and And-elim}

 $A_1 \land A_2 \land A_n \implies A_i$

Example. Inference rules approach.

KB: $P \land Q \quad P \implies R \quad (Q \land R) \implies S \quad \text{Theorem: } S$

1. $P \land Q$
2. $P \implies R$
3. $(Q \land R) \implies S$
4. P
5. R \hspace{1cm} \text{From 2,4 and Modus ponens}

 $A \implies B, \quad A \implies B$
Example. Inference rules approach.

KB: $P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \quad \text{Theorem: } S$

1. $P \land Q$
2. $P \Rightarrow R$
3. $(Q \land R) \Rightarrow S$
4. P
5. R
6. Q \hspace{1cm} \text{From 1 and And-elim}
\[
\frac{A_1 \land A_2 \land \ldots \land A_n}{A_i}
\]

Example. Inference rules approach.

KB: $P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \quad \text{Theorem: } S$

1. $P \land Q$
2. $P \Rightarrow R$
3. $(Q \land R) \Rightarrow S$
4. P
5. R
6. Q
7. $(Q \land R)$ \hspace{1cm} \text{From 5,6 and And-introduction}
\[
\frac{A_1, A_2, \ldots, A_n}{A_1 \land A_2 \land \ldots \land A_n}
\]
Example. Inference rules approach.

KB: \(P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \) \hspace{1cm} **Theorem:** \(S \)

1. \(P \land Q \)
2. \(P \Rightarrow R \)
3. \((Q \land R) \Rightarrow S \)
4. \(P \)
5. \(R \)
6. \(Q \)
7. \((Q \land R) \)
8. \(S \) From 7,3 and Modus ponens

Proved: \(S \)