Finding optimal configurations II

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcements

• Homework assignment 3 due today
• Homework assignment 4 is out
 – Programming and experiments
 – Simulated annealing + Genetic algorithm
 – Competition

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/
Search for the optimal configuration

Objective:
- find the optimal configuration

Optimality:
- is defined by some quality measure

Quality measure
- reflects our preference towards each configuration (or state)

Example: Traveling salesman problem

Problem:
- A graph with distances

- **Goal:** find the shortest tour which visits every city once and returns to the start

 An example of a valid tour: ABCDEF
Example: N queens

- A CSP problem can be converted to the ‘optimal’ configuration problem
- The quality of a configuration in a CSP
 = the number of constraints violated
- Solving: minimize the number of constraint violations

Iterative optimization methods

- Solutions to large ‘optimal’ configuration problems are often found using iterative optimization methods
- Why?
 - Searching systematically for the best configuration with the search methods covered so far may not be the best solution
 - Running times of DFS and BFS:
 - Exponential in the number of variables
 - Uniform cost or A* algorithms would require
 - Too many partial solutions are kept active

- Iterative Optimization Methods:
 - ?
Iterative optimization methods

Properties:

– **Search** the space of “complete” configurations
– **Take advantage of local moves**
 • Operators make “local” changes to “complete” configurations
– **Keep track of just one state (the current state)**
 • no memory of past states
 • !!! No search tree is necessary !!!

Hill climbing

• Look around at states in the local neighborhood and choose the one with the best value
• Problems: ?
Simulated annealing

- Permits “bad” moves to states with lower value, thus escape the local optima
- **Gradually decreases** the frequency of such moves and their size (parameter controlling it – temperature)

Simulated annealing algorithm

The probability of making a move:

- A good move (moving into a state with a higher value)
 - Probability is 1
- A “bad” move (moving into a state with a lower value)
 - is
 \[p(\text{Accept NEXT}) = e^{\Delta E / T} \]
 where \(\Delta E = E_{\text{NEXT}} - E_{\text{CURRENT}} \)

 - Proportional to the energy difference
Simulated annealing algorithm

Current configuration

- Energy $E=167$
- Energy $E=180$
- Energy $E=191$

Energy $E=145$

$\Delta E = E_{\text{NEXT}} - E_{\text{CURRENT}}$

$= 145 - 167 = -22$

$p(\text{Accept}) = e^{\Delta E / T} = e^{-22 / T}$

Sometimes accept!
Simulated annealing algorithm

The probability of moving into a state with a lower value is

\[p(\text{Accept}) = e^{\frac{\Delta E}{T}} \]

where \(\Delta E = E_{\text{next}} - E_{\text{current}} \)

The probability is:

- **Modulated through a temperature parameter** \(T \):
 - for \(T \to \infty \) the probability of any move approaches 1
 - for \(T \to 0 \) the probability that a state with smaller value is selected goes down and approaches 0

- **Cooling schedule**:
 - Schedule of changes of a parameter \(T \) over iteration steps

\[\Delta E = 180 - 167 > 0 \]
\[p(\text{Accept}) = 1 \]

Always accept!
Simulated annealing algorithm

- **Simulated annealing algorithm**
 - developed originally for modeling physical processes
 (Metropolis et al, 53)

- **Properties:**
 - If T is decreased slowly enough the best configuration (state) is always reached

- **Applications:**
 - VLSI design
 - airline scheduling

Simulated evolution and genetic algorithms

- Limitations of **simulated annealing:**
 - Pursues one state configuration at the time;
 - Changes to configurations are typically local

Can we do better?

- Assume we have two configurations with good values that are quite different
- We expect that the combination of the two individual configurations may lead to a configuration with higher value (Not guaranteed !!)

This is the idea behind **genetic algorithms** in which we grow a population of individual combinations
Genetic algorithms

Algorithm idea:

• Create a population of random configurations
• Create a new population through:
 – Biased selection of pairs of configurations from the previous population
 – Crossover (combination) of pairs
 – Mutation of resulting individuals
• Evolve the population over multiple generation cycles

• Selection of configurations to be combined:
 – Fitness function = value function
 measures the quality of an individual (a state) in the population

Reproduction process in GA

• Assume that a state configuration is defined by a set variables with two values, represented as 0 or 1
Parametric optimization

Optimal configuration search:
• Configurations are described in terms of variables and their values
• Each configuration has a quality measure
• Goal: find the configuration with the best value

When the state space we search is finite, the search problem is called a combinatorial optimization problem
When parameters we want to find are real-valued
 – parametric optimization problem

Parametric optimization:

• Configurations are described by a vector of free parameters (variables) \mathbf{w} with real-valued values

• **Goal:** find the set of parameters \mathbf{w} that optimize the quality measure $f(\mathbf{w})$
Parametric optimization techniques

- Special cases (with efficient solutions):
 - Linear programming
 - Quadratic programming
- First-order methods:
 - Gradient-ascent (descent)
 - Conjugate gradient
- Second-order methods:
 - Newton-Rhapson methods
 - Levenberg-Marquardt
- Constrained optimization:
 - Lagrange multipliers

Gradient ascent method

- Gradient ascent: the same as hill-climbing, but in the continuous parametric space w

- What is the derivative of an increasing function?
Gradient ascent method

• **Gradient ascent**: the same as hill-climbing, but in the continuous parametric space \(w \)

\[
\frac{\partial}{\partial w} f(w) \bigg|_{w^*}
\]

• What is the derivative of an increasing function?
 – positive

• Change the parameter value of \(w \) according to the gradient

\[
w \leftarrow w^* + \alpha \frac{\partial}{\partial w} f(w) \bigg|_{w^*}
\]
Gradient ascent method

- New value of the parameter

\[w \leftarrow w^* + \alpha \frac{\partial}{\partial w} f(w) \big|_{w^*} \]

\[\alpha > 0 \] - a learning rate (scales the gradient changes)

- To get to the function minimum repeat (iterate) the gradient based update few times

- Problems: local optima, saddle points, slow convergence
- More complex optimization techniques use additional information (e.g. second derivatives)