CS 1571 Introduction to AI
Lecture 27

Applied AI topics

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Topics in AI

Five main areas:
• Problem solving and search
• Logic and knowledge representations
• Planning
• Uncertainty
• Learning

Many other topics:
– AI programming languages
– Speech recognition
– Natural language processing
– Image understanding
– Robotics,
Speech recognition

- **Objective**: take acoustic signal and convert it to text

Analog acoustic signal:

Sampled, quantized digital signal:

Sample Frequency: <18KHz
Energy: 8-12bits

Frames with features:

Frames: 10msec long
Features: for the frame (e.g. energy in some frequency band)

Frames with vector quantization values:

Discretize features: e.g. to 256 values (8 bits)

Speech recognition

- We want to determine the sequence of words that is most probable given the input signal

\[P(\text{wordseq} = w \mid \text{signal} = s) \]

- It is easier to define an **acoustic model** that relates:

\[P(\text{signal} = s \mid \text{wordseq} = w) \]

- This is like a diagnosis problem, we can use the Bayes rule:

\[
P(\text{wordseq}=w \mid \text{signal}=s) = \frac{P(\text{signal}=s \mid \text{wordseq}=w)P(\text{wordseq}=w)}{P(\text{signal}=s)}\]

- Assume we have multiple possible word sequences:

\[w^1, w^2, \ldots, w^k \]

- The best word sequence:

\[
\arg\max_{w^i} P(\text{signal}=s \mid \text{wordseq}=w^i)P(\text{wordseq}=w^i)
\]
Speech recognition

- We need to define:
 \[P(\text{signal} = s \mid \text{wordseq} = w) \text{ and } P(\text{wordseq} = w) \]
 for all possible word and signal sequences
- **Defining the probability:** \(P(\text{wordseq} = w) \), \(w = w_1w_2 \ldots w_n \)
 \[P(\text{wordseq} = w_1w_2 \ldots w_n) = P(w_1)P(w_2 \mid w_1) \ldots P(w_n \mid w_1w_2 \ldots w_{n-1}) \]
 - By the chain rule
- **Simplifications:**
 - **Unigram model:** a probability of each word is independent of the previous word
 \[P(\text{wordseq} = w_1w_2 \ldots w_n) = P(w_1)P(w_2) \ldots P(w_n) \]
 - **Bigram model:** only the previous word matters
 \[P(\text{wordseq} = w_1w_2 \ldots w_n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_2) \ldots P(w_n \mid w_{n-1}) \]
Speech recognition

HMM models of words \[P(p = p_1p_2\ldots p_n \mid \text{word} = w_i) \]

- **Example:** word: tomato

Word model with dialect variation:

- 2 phones sequences

Word model with coarticulation and dialect variations:

- 4 phones sequences

Speech recognition

HMM model of phones \[P(s = s_1s_2\ldots s_r \mid \text{phone} = p_q) \]

Example:

Phone HMM for [m]:

- Many possible feature sequences:
 - C1 C4 C6
 - C1 C1 C4 C6
 - C1 C1 C5 C4 C6
 - ...

Output probabilities for the phone HMM:

- C1: 0.5 C3: 0.2 C4: 0.1
- C2: 0.2 C4: 0.7 C6: 0.5
- C3: 0.3 C5: 0.1 C7: 0.4
Speech recognition

- **Finding the most probable path** through an HMM for \([m] \)
- **Example:** sequence: \(C1 \ C3 \ C4 \ C6\)

![Speech recognition diagram]

Natural language processing

Goal: Analyze and interpret the text in the natural language

- **Input:** text sentences.
 - Speech recognition system
 - Optical character recognition (OCR)
 - Documents in the electronic form
- **Output:**
 - Knowledge extracted from the text that supports various inferences
- **Processing (multi-step process):**
 - Syntactic interpretation (parsing)
 - Semantic interpretation
 - Disambiguation & Incorporation
Natural language processing

Syntactic interpretation (parsing):
- **Input:** a sentence
- **Output:** a parse tree
- Uses grammar models for parsing the sentence to phrases and terminal symbols
- **Example:** ‘The wumpus is dead’

```
S
  /\  \
/   \ /
NP   VP
    /\  /
   |   |
  Article Noun Verb Adjective
```

- Sometimes we have more than one possible parse. **Stochastic grammars** (quantify the goodness of possible parses)

Natural language processing

- **Semantic interpretation:**
 - **input:** a parse tree
 - **output:** a set of meanings, e.g. in First order logic (FOL)
- **Example:** ‘The wumpus is dead’
 - Gives two possible semantic interpretations:
 - $\neg \text{Alive}(\text{Wumpus, Now})$
 - $\text{Tired}(\text{Wumpus, Now})$
- **Disambiguation:**
 - chooses the most probable interpretation
- **Incorporation:**
 - The extracted knowledge is checked for consistency against other pieces of knowledge before it is incorporated into the KB
Image processing and vision

- **Classic image processing problem:**
 - Analysis of image and extraction of information from the image
 - Can be used in many applications:
 - Scene analysis
 - Manipulation and navigation tasks
 - Image retrieval
- **Other image processing problems:**
 - **Image enhancement:** degraded image should be improved to restore particular features
 - **Storage and Compression:** Large amounts of data need to be archived or transmitted
 - **Visualization**

Image processing

Image is defined by

- a **light intensity function** over the **image plane**

(Continuous) image is typically **discretized**

Image plane is discretized into:

- Pixels arranged on the rectangular grid
- Resolution of the grid determines the spatial quality of the discretization

Light intensity values are discretized into:

- Integers values in some interval

Typical (black and white) image input:

- 512x512 pixels
- Light intensity: 8 bits – 512 types of gray
Image processing

Analysis of image and extraction of information from the image

- **Segmentation:**
 - Division of the image to meaningful entities in the scene
 - Relies heavily on edge detection algorithms

Image processing and vision

Analysis of image and extraction of information from the image

- To recognize (identify) the object from the image we need to compare it with the class pattern
- **Problem:** The position, orientation and the scale of the object in the scene may vary
- **Solution:** Use a set of basic transformations:
 - scaling,
 - translation,
 - rotation of the object
 - Transformations are relatively easy for 2D objects, much harder for 3-D objects
- **Other problems:** light sources and shadows
Image processing and vision

- **More complex task**: analysis of a sequence of related images (videos)
- **Image registration**: the process of measuring visual motion between images.
- **When this is useful**:
 - Video - commercial skip
 - Detection and tracking of objects in the real world