Bayesian belief networks

Uncertainty

- **Is an essential feature of many real-world problems**
- **Relations between components, states of the world are often uncertain**

Examples:

- **Medical diagnosis**
 - A patient suffering from pneumonia may not have fever all the times, may or may not have a cough, white blood cell test can be in a normal range.
 - High fever is typical for many diseases (e.g. bacterial diseases) and does not point specifically to pneumonia

- **Therapy planning**
 - A response of a patient to a therapy is not deterministic, the patient’s state can improve, stay the same, or worsen
Modeling the uncertainty.

Key issues:
• How to describe, represent the relations in the presence of uncertainty?
• How to manipulate such knowledge to make inferences?
 – Humans can reason with uncertainty.

Probability theory

a well-defined coherent theory for representing uncertainty and for reasoning with it

Representation:
Propositional statements – assignment of values to random variables

\[P(\text{Pneumonia} = \text{True}) = 0.001 \]
\[P(\text{WBC count} = \text{high}) = 0.005 \]
\[P(\text{Pneumonia} = \text{True}, \text{Fever} = \text{True}) = 0.0009 \]
\[P(\text{Pneumonia} = \text{False}, \text{WBC count} = \text{normal}, \text{Cough} = \text{False}) = 0.97 \]
Joint probability distribution

Joint probability distribution (for a set variables)
• Defines probabilities for all possible assignments of values to variables in the set

\[P(pneumonia, WBCcount) \]

\[
\begin{array}{c|ccc|c}
\text{Pneumonia} & \text{high} & \text{normal} & \text{low} & \text{P}(\text{Pneumonia}) \\
\hline
\text{True} & 0.0008 & 0.0001 & 0.0001 & \\
\text{False} & 0.0042 & 0.9929 & 0.0019 & \\
\hline
& 0.005 & 0.993 & 0.002 & 0.001 \\
& & & & 0.999 \\
\end{array}
\]

Marginalization - summing out variables

Variable independence

• The joint distribution over a subset of variables can be always computed from the joint distribution through marginalization

• Not the other way around !!!
 – Only exception: when variables are independent
 \[P(A, B) = P(A)P(B) \]
Conditional probability

- **Conditional probability:** Probability of A given B
 \[P(A | B) = \frac{P(A, B)}{P(B)} \]
- Conditional probability is defined in terms of joint probabilities
- Joint probabilities can be expressed in terms of conditional probabilities
 \[P(A, B) = P(A | B)P(B) \quad \text{(product rule)} \]
 \[P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | X_1, \ldots, X_{i-1}) \quad \text{(chain rule)} \]
- Conditional probability – is useful for various probabilistic inferences
 \[P(\text{Pneumonia} = \text{True} | \text{Fever} = \text{True}, \text{WBC count} = \text{high}, \text{Cough} = \text{True}) \]

Bayes rule

- **Bayes rule:**
 \[P(A | B) = \frac{P(A, B)}{P(B)} \]
 \[P(A, B) = P(B | A)P(A) \]
- **Bayes rule:**
 \[P(A | B) = \frac{P(B | A)P(A)}{P(B)} \]
- **When is it useful?**
 - When we are interested in computing the diagnostic probability, from the causal probability
 \[P(\text{cause} | \text{effect}) = \frac{P(\text{effect} | \text{cause})P(\text{cause})}{P(\text{effect})} \]
 - **Reason:** It is often easier to assess causal probability
 - E.g. Probability of pneumonia causing fever
 vs. probability of pneumonia given fever
Probabilistic inference

Various inference tasks:

• **Diagnostic task. (from effect to cause)**
 \[P(\text{Pneumonia} \mid \text{Fever} = T) \]

• **Prediction task. (from cause to effect)**
 \[P(\text{Fever} \mid \text{Pneumonia} = T) \]

• **Other probabilistic queries** (queries on joint distributions).
 \[P(\text{Fever}) \]
 \[P(\text{Fever}, \text{ChestPain}) \]

Inference

Any query can be computed from the full joint distribution !!!

• **Joint over a subset of variables** is obtained through marginalization
 \[P(A = a, C = c) = \sum_i \sum_j P(A = a, B = b, C = c, D = d) \]

• **Conditional probability over set of variables**, given other variables’ values is obtained through marginalization and definition of conditionals
 \[P(D = d \mid A = a, C = c) = \frac{P(A = a, C = c, D = d)}{P(A = a, C = c)} \]
 \[= \frac{\sum_j P(A = a, B = b, C = c, D = d_j)}{\sum_i \sum_j P(A = a, B = b_i, C = c, D = d_j)} \]
Inference.

Any query can be computed from the full joint distribution !!!

- Any joint probability can be expressed as a product of conditionals via the chain rule.

\[
P(X_1, X_2, \ldots, X_n) = P(X_n \mid X_1, \ldots, X_{n-1})P(X_1, \ldots, X_{n-1})
\]

\[
= P(X_n \mid X_1, \ldots, X_{n-1})P(X_{n-1} \mid X_1, \ldots, X_{n-2})P(X_1, \ldots, X_{n-2})
\]

\[
= \prod_{i=1}^{n} P(X_i \mid X_1, \ldots, X_{i-1})
\]

- It is often easier to define the distribution in terms of conditional probabilities:
 - E.g. \(P(Fever \mid Pneumonia = T) \)
 - \(P(Fever \mid Pneumonia = F) \)

Simple diagnostic inference. Example.

- **Device** (equipment) operating normally or malfunctioning.
 - Operation of the device sensed indirectly via a sensor

- **Sensor reading** is either high or low

\[
\begin{array}{c|cc}
\text{Device status} & \text{normal} & \text{malfunctioning} \\
\hline
\text{normal} & 0.9 & 0.1 \\
\end{array}
\]

\[
\begin{array}{c|cc}
\text{Device} \backslash \text{Sensor} & \text{high} & \text{low} \\
\hline
\text{normal} & 0.1 & 0.9 \\
\text{malfunctioning} & 0.6 & 0.4 \\
\end{array}
\]
Diagnostic inference. Example.

• **Diagnostic inference:** compute the probability of device operating normally or malfunctioning given a sensor reading

\[
P(\text{Device status} | \text{Sensor reading} = \text{high}) = \, ?
\]

\[
\begin{pmatrix}
P(\text{Device status} = \text{normal} | \text{Sensor reading} = \text{high}) \\
P(\text{Device status} = \text{malfunctioning} | \text{Sensor reading} = \text{high})
\end{pmatrix}
\]

• Note that the opposite conditional probabilities are available

• **Solution:** apply Bayes rule to reverse the conditioning variables

Modeling uncertainty with probabilities

• Defining the full joint distribution makes it possible to represent and reason with uncertainty in a uniform way

• We are able to handle an arbitrary inference problem

Problems:

– **Space complexity.** To store a full joint distribution we need to remember \(O(d^n)\) numbers.

\(n\) – number of random variables, \(d\) – number of values

– **Inference (time) complexity.** To compute some queries requires \(O(d^n)\) steps.

– **Acquisition problem.** Who is going to define all of the probability entries?
Medical diagnosis example.

- **Space complexity.**
 - Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), WBCcount (3: high, normal, low), paleness (2: T,F)
 - Number of assignments: $2 \times 2 \times 2 \times 3 \times 2 = 48$
 - We need to define at least 47 probabilities.

- **Time complexity.**
 - Assume we need to compute the marginal of Pneumonia=T from the full joint distribution
 \[
P(Pneumonia = T) =
\sum_{i \in \{T,F\}} \sum_{j \in \{T,F\}} \sum_{k = h,n,l} \sum_{u \in \{T,F\}} P(Pneumonia = T, Fever = i, Cough = j, WBCcount = k, Pale = u)
\]
 - Sum over: $2 \times 2 \times 3 \times 2 = 24$ combinations

Modeling uncertainty with probabilities

- **Knowledge based system era (70s – early 80’s)**
 - Extensional non-probabilistic models
 - Solve the space, time and acquisition bottlenecks in probability-based models
 - froze the development and advancement of KB systems and contributed to the slow-down of AI in 80s in general

- **Breakthrough** (late 80s, beginning of 90s)
 - **Bayesian belief networks**
 - Give solutions to the space, acquisition bottlenecks
 - Partial solutions for time complexities
 - Bayesian belief network
Bayesian belief networks (BBNs)

Bayesian belief networks.
- Represent the full joint distribution over the variables more compactly with a **smaller number of parameters**.
- Take advantage of **conditional and marginal independences** among random variables.

- **A and B are independent**
 \[P(A, B) = P(A)P(B) \]
- **A and B are conditionally independent given C**
 \[P(A, B | C) = P(A | C)P(B | C) \]
 \[P(A | C, B) = P(A | C) \]

Alarm system example.
- Assume your house has an **alarm system** against **burglary**. You live in the seismically active area and the alarm system can get occasionally set off by an **earthquake**. You have two neighbors, **Mary** and **John**, who do not know each other. If they hear the alarm they call you, but this is not guaranteed.
- We want to represent the probability distribution of events:
 - Burglary, Earthquake, Alarm, Mary calls and John calls

Causal relations

```
Burglary -> Alarm -> MaryCalls, JohnCalls
Earthquake -> Alarm
```

CS 1571 Intro to AI
Bayesian belief network.

1. Directed acyclic graph
 - **Nodes** = random variables
 Burglary, Earthquake, Alarm, Mary calls and John calls
 - **Links** = direct (causal) dependencies between variables.
 The chance of Alarm being is influenced by Earthquake,
 The chance of John calling is affected by the Alarm

2. Local conditional distributions
 - relate variables and their parents
Bayesian belief networks (general)

Two components: \(B = (S, \Theta_S) \)

- **Directed acyclic graph**
 - Nodes correspond to random variables
 - (Missing) links encode independences

- **Parameters**
 - Local conditional probability distributions for every variable-parent configuration

\[
P(X_i \mid pa(X_i))
\]

Where:
\(pa(X_i) \) - stand for parents of \(X_i \)

\[
P(B)
\]

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.001</td>
<td>0.999</td>
</tr>
</tbody>
</table>

\[
P(E)
\]

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0.002</td>
<td>0.998</td>
</tr>
</tbody>
</table>

\[
P(A \mid B, E)
\]

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>E</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.95</td>
<td>0.05</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.94</td>
<td>0.06</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.29</td>
<td>0.71</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.001</td>
<td>0.999</td>
</tr>
</tbody>
</table>

\[
P(J \mid A)
\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.90</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.05</td>
<td>0.95</td>
<td></td>
</tr>
</tbody>
</table>

\[
P(M \mid A)
\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.01</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>

CS 1571 Intro to AI
Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

\[
P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^{n} P(X_i \mid pa(X_i))
\]

Example:

Assume the following assignment of values to random variables

\[B = T, E = T, A = T, J = T, M = F\]

Then its probability is:

\[P(B = T, E = T, A = T, J = T, M = F) = P(B = T)P(E = T)P(A = T \mid B = T, E = T)P(J = T \mid A = T)P(M = F \mid A = T)\]