Planning

CS 1571 Introduction to AI
Lecture 13

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Administration

• PS-5 due today:
 – Report
 – No programming assignment

• No homework out

• Midterm:
 – Tuesday, October 15, 2002
 – In-class, closed book
 – Material covered till (including) Thursday, October 10
Planning

Propositional and first-order logic

- Give formalisms for representing the knowledge about the world and ways of reasoning
- Statements about the world are either true or false

The real-world:

- Is dynamic; i.e. it can change over time
 - Things that are true now may not be true in the future
 Example: Age(John, 17) Age(John, 18)
- An intelligent agent can actively change the world through actions.
 Example: action of painting car12 blue causes:
 color(car12, white) becomes false and color(car12, blue) true

Planning problem: find a sequence of actions that lead to a goal

Planning

Planning problem:

- find a sequence of actions that lead to a goal
- is a special type of a search problem

Search problem:

- State space – a set of states of the world among which we search for the solution.
- Initial state. A state we start from.
- Operators. Map states to new states.
- Goal condition. Test whether the goal is satisfied.

Challenges:

- Build a representation language for modeling action and change
- Design of special search algorithms for a given representation
Planning search. Example.

- Assume a simple problem of buying things:
 - Get a quarter of milk, bananas, cordless drill

 A huge branch factor !!! Goals can take multiple steps to reach!!!

Planning

How to address the problems?

- Open state, action and goal representations to allow selection, reasoning. Make things visible and expose the structure.
 - Use FOL or its restricted subset to do the reasoning.
- Add actions to the plan sequence wherever and whenever it is needed
 - Drop the need to construct solutions sequentially from the initial state.
- Apply divide and conquer strategies to sub-goals if these are independent.

Challenges:

- Build a representation language for modeling action and change
- Design of special search algorithms for a given representation
Planning systems design.

Two planning systems designs:

- **Situation calculus**
 - based on first-order logic,
 - a situation variable models new states of the world
 - use inference methods developed for FOL to do reasoning

- **STRIPS – like planners**
 - STRIPS – Stanford research institute problem solver
 - Restricted language as compared to the situation calculus
 - Allows for more efficient planning algorithms

Situation calculus

- Logic for reasoning about changes in the state of the world
- **The world is described by:**
 - Sequences of situations of the current state
 - Changes from one situation to another are caused by actions

- **The situation calculus allows us to:**
 - Describe the initial state and goal state
 - Build the KB that describes the effect of actions (operators)
 - Prove that the KB implies the goal state
 - • and thereby allow us to extract a plan
Situation calculus

Language:

- **Special variables**: s, a – objects of type situation and action
- **Action functions** that return actions.
 - E.g. $\text{Move}(A, \text{TABLE}, B)$ represents a move action
 - $\text{Move}(x, y, z)$ represents an action schema
- **Two special function symbols of type situation**
 - s_0 – initial situation
 - $\text{DO}(a, s)$ – denotes the situation obtained after performing an action a in situation s
- **Situation-dependent functions and relations** (also called fluents)
 - **Relation**: $\text{On}(x, y, s)$ – object x is on object y in situation s;
 - **Function**: $\text{Above}(x, s)$ – object that is above x in situation s.

Situation calculus. Blocks world example.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial state</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(A, \text{Table}, s_0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(B, \text{Table}, s_0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(C, \text{Table}, s_0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Clear}(A, s_0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Clear}(B, s_0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Clear}(C, s_0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Clear}(\text{Table}, s_0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(A, B, s)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(B, C, s)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(C, \text{Table}, s)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Blocks world example.

Initial state

On(A, Table, s₀)
On(B, Table, s₀)
On(C, Table, s₀)

Clear(A, s₀)
Clear(B, s₀)
Clear(C, s₀)
Clear(Table, s₀)

Goal

On(A, B, s)
On(B, C, s)
On(C, Table, s)

Note: It is not necessary that the goal describes all relations

Clear(A, s)

Assume a simpler goal On(A, B, s)

Initial state

On(A, Table, s₀)
On(B, Table, s₀)
On(C, Table, s₀)

Clear(A, s₀)
Clear(B, s₀)
Clear(C, s₀)
Clear(Table, s₀)

Goal

On(A, B, s)

2 possible goal states

On(A, B, s)
Knowledge about the world. Axioms.

Knowledge in the KB
• represents changes in the world due to actions.

Two types of axioms:
• **Effect axioms**
 – changes in situations that result from actions
• **Frame axioms**
 – things preserved from the previous situation

Blocks world example. Effect axioms.

Effect axioms:

Moving x from y to z. \(MOVE (x, y, z) \)

Effect of move changes on **On** relations
\[On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow On(x, z, DO(MOVE(x, y, z), s)) \]
\[On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow \neg On(x, y, DO(MOVE(x, y, z), s)) \]

Effect of move changes on **Clear** relations
\[On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow Clear(y, DO(MOVE(x, y, z), s)) \]
\[On(x, y, s) \land Clear(x, s) \land Clear(z, s) \land (z \neq Table) \rightarrow \neg Clear(z, DO(MOVE(x, y, z), s)) \]
Blocks world example. Frame axioms.

- **Frame axioms.**
 - Represent things that remain unchanged after an action.

 On relations:
 \[\text{On}(u, v, s) \land (u \neq x) \land (v \neq y) \rightarrow \text{On}(u, v, \text{DO}(\text{MOVE} (x, y, z), s)) \]

 Clear relations:
 \[\text{Clear} (u, s) \land (u \neq z) \rightarrow \text{Clear} (u, \text{DO}(\text{MOVE} (x, y, z), s)) \]

Planning in situation calculus.

Planning problem:
- find a sequence of actions that lead to a goal

Planning in situation calculus is converted to theorem proving.

Goal state:
\[\exists s \ \text{On}(A, B, s) \land \text{On}(B, C, s) \land \text{On}(C, \text{Table}, s) \]

- Possible inference approaches:
 - **Inference rule approach**
 - **Conversion to SAT**
- **Plan** (solution) is a byproduct of theorem proving.
- **Example:** blocks world
Planning in a blocks world.

Initial state

- $On(A, Table, s_0)$
- $On(B, Table, s_0)$
- $On(C, Table, s_0)$
- $Clear(A, s_0)$
- $Clear(B, s_0)$
- $Clear(C, s_0)$
- $Clear(Table, s_0)$

Goal

- $On(A, B, s)$
- $On(B, C, s)$
- $On(C, Table, s)$

Planning in the blocks world.

Initial state (s_0)

$s_0 =$

- $On(A, Table, s_0)$
- $On(B, Table, s_0)$
- $On(C, Table, s_0)$
- $Clear(A, s_0)$
- $Clear(B, s_0)$
- $Clear(C, s_0)$
- $Clear(Table, s_0)$

Action: $MOVE(B, Table, C)$

$s_1 = DO(MOVE(B, Table, C), s_0)$

?
Planning in the blocks world.

Initial state (s0)

\[
s_0 = \\
On(A,\text{Table},s_0) \quad \text{Clear} (A,s_0) \quad \text{Clear} (\text{Table},s_0) \\
On(B,\text{Table},s_0) \quad \text{Clear} (B,s_0) \\
On(C,\text{Table},s_0) \quad \text{Clear} (C,s_0)
\]

Action: \(MOVE (B,\text{Table},C) \)

\[
s_1 = DO(MOVE (B,\text{Table},C),s_0) \\
On(A,\text{Table},s_1) \quad \text{Clear} (A,s_1) \quad \text{Clear} (\text{Table},s_1) \\
On(B,C,s_1) \quad \text{Clear} (B,s_1) \\
\neg On(B,\text{Table},s_1) \quad \neg \text{Clear} (C,s_1) \\
On(C,\text{Table},s_1)
\]

CS 1571 Intro to AI
Planning in the blocks world.

Initial state (s_0)

$s_1 = DO(MOVE(B, Table, C), s_0)$

$On(A, Table, s_1)$

$On(B, C, s_1)$

$On(C, Table, s_1)$

Clear(A, s_1)

Clear(B, s_1)

Clear(C, s_1)

Action: $MOVE(A, Table, B)$

$s_2 = DO(MOVE(A, Table, B), s_1)$

= $DO(MOVE(A, Table, B), DO(MOVE(B, Table, C), s_0))$

$On(A, B, s_2)$

$On(B, C, s_2)$

$On(C, Table, s_2)$

$On(A, Table, s_2)$

$On(B, Table, s_2)$

$On(C, Table, s_2)$

Clear($A, s_2)$

Clear($B, s_2)$

Clear($C, s_2)$

Goal state:

Planning in situation calculus.

Planning problem:

- find a sequence of actions that lead to a goal

Planning in situation calculus is converted to theorem proving.

Goal state:

$\exists s \; On(A, B, s) \land On(B, C, s) \land On(C, Table, s)$

Possible inference approaches:

- Inference rule approach
- Conversion to SAT

Plan (solution) is a byproduct of theorem proving.

Problem:

- Large search space.
- Proof may not lead to the best plan.
Frame problem

Frame problem refers to:
- The need to represent a large number of frame axioms

Solution: combine positive and negative effects in one rule

\[\text{On}(u, v, \text{DO}(\text{MOVE}(x, y, z), s)) \Leftrightarrow (\neg((u = x) \land (v = y)) \land \text{On}(u, v, s)) \lor \]
\[\lor (((u = x) \land (v = z)) \land \text{On}(x, y, s) \land \text{Clear}(x, s) \land \text{Clear}(z, s)) \]

Inferential frame problem:
- We still need to derive properties that remain unchanged

Other problems:
- **Qualification problem** – enumeration of all possibilities under which an action holds
- **Ramification problem** – enumeration of all inferences that follow from some facts