First-order logic

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Solving logical inference problem

In the following:

How to design the procedure that answers:

\[KB \models \alpha ? \]

Three approaches:
• Truth-table approach
• Inference rules
• Conversion to the inverse SAT problem
 – Resolution-refutation
KBs in the Horn form

Horn clause:

a special type of clause with at most one positive literal

\[(A \lor \neg B) \land (\neg A \lor \neg C \lor D)\]

Can be written also as: \((B \Rightarrow A) \land ((A \land C) \Rightarrow D)\)

KB with statements in the Horn form:

- Two types of propositional statements:
 - Implications: called **rules** \((B \Rightarrow A)\)
 - Propositional symbols: **facts** \(B\)

Modus ponens:

- is the “universal “(complete) rule for the KB with sentences in the Horn form

\[
\begin{align*}
A \Rightarrow B, \quad & A \\
\hline
& A_1 \land A_2 \land \ldots \land A_k \Rightarrow B, \quad A_1, A_2, \ldots A_k \\
& B
\end{align*}
\]

Forward and backward chaining

Two inference procedures based on **modus ponens** for **Horn KBs**:

- **Forward chaining**

 Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

- **Backward chaining (goal reduction)**

 Idea: To prove the fact that appears in the conclusion of a rule prove the premises of the rule. Continue recursively.

Both procedures are **complete for KBs in the Horn form** !!!
Forward chaining example

• Forward chaining
 Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

Assume the KB with the following rules and facts:
KB: R1: \(A \land B \Rightarrow C \)
 R2: \(C \land D \Rightarrow E \)
 R3: \(C \land F \Rightarrow G \)

F1: \(A \)
F2: \(B \)
F3: \(D \)

Theorem: \(E \) ?

Rule R1 is satisfied.
F4: \(C \)
Forward chaining example

Theorem: \(E \)

KB:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>(A \land B \implies C)</td>
</tr>
<tr>
<td>R2</td>
<td>(C \land D \implies E)</td>
</tr>
<tr>
<td>R3</td>
<td>(C \land F \implies G)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fact</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>(A)</td>
</tr>
<tr>
<td>F2</td>
<td>(B)</td>
</tr>
<tr>
<td>F3</td>
<td>(D)</td>
</tr>
</tbody>
</table>

Rule R1 is satisfied.

<table>
<thead>
<tr>
<th>Fact</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F4</td>
<td>(C)</td>
</tr>
</tbody>
</table>

Rule R2 is satisfied.

<table>
<thead>
<tr>
<th>Fact</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F5</td>
<td>(E)</td>
</tr>
</tbody>
</table>

Backward chaining example

KB:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>(A \land B \implies C)</td>
</tr>
<tr>
<td>R2</td>
<td>(C \land D \implies E)</td>
</tr>
<tr>
<td>R3</td>
<td>(C \land F \implies G)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fact</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>(A)</td>
</tr>
<tr>
<td>F2</td>
<td>(B)</td>
</tr>
<tr>
<td>F3</td>
<td>(D)</td>
</tr>
</tbody>
</table>

- Backward chaining is more focused:
 - tries to prove the theorem only

CS 1571 Intro to AI
Backward chaining example

KB: R1: \(A \land B \Rightarrow C \)
 R2: \(C \land D \Rightarrow E \)
 R3: \(C \land F \Rightarrow G \)
 F1: \(A \)
 F2: \(B \)
 F3: \(D \)

- Backward chaining is more focused:
 - tries to prove the theorem only

KB agents based on propositional logic

- Propositional logic allows us to build **knowledge-based agents** capable of answering queries about the world by inferring new facts from the known ones
- **Example:** an agent for diagnosis of a bacterial disease

Facts:
- The stain of the organism is gram-positive
- The growth conformation of the organism is chains

Rules:
- (If)
 - The stain of the organism is gram-positive \(\land \)
 - The morphology of the organism is coccus \(\land \)
 - The growth conformation of the organism is chains
- (Then) \(\Rightarrow \)
 - The identity of the organism is streptococcus
Limitations of propositional logic

World we want to represent and reason about consists of a number of objects with variety of properties and relations among them

Propositional logic:
- Represents statements about the world without reflecting this structure and without modeling these entities explicitly

Consequence:
- Some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
 - **Statements about similar objects, relations**
 - **Statements referring to groups of objects.**

Limitations of propositional logic

- **Statements about similar objects and relations needs to be enumerated**
- **Example:** Seniority of people domain

Assume we have:
- John is older than Mary
 - Mary is older than Paul

To derive John is older than Paul we need:
- John is older than Mary \(\land \) Mary is older than Paul
 \[\Rightarrow \text{John is older than Paul} \]

Assume we add another fact:
- Jane is older than Mary

To derive Jane is older than Paul we need:
- Jane is older than Mary \(\land \) Mary is older than Paul
 \[\Rightarrow \text{Jane is older than Paul} \]

Problem: KB grows large
Limitations of propositional logic

- **Statements about similar objects and relations needs to be enumerated**
- **Example:** Seniority of people domain

 For inferences we need:

 \[
 \begin{align*}
 John & \text{ is older than Mary} \land \text{ Mary is older than Paul} \\
 \Rightarrow & \text{ John is older than Paul} \\
 Jane & \text{ is older than Mary} \land \text{ Mary is older than Paul} \\
 \Rightarrow & \text{ Jane is older than Paul}
 \end{align*}
 \]

- **Problem:** if we have many people and facts about their seniority we need to represent many rules like this to allow inferences
- **Possible solution:** introduce variables

\[
\begin{align*}
\text{PersA} & \text{ is older than PersB} \land \text{ PersB is older than PersC} \\
\Rightarrow & \text{ PersA is older than PersC}
\end{align*}
\]
Limitations of propositional logic

- **Statements referring to groups of objects require exhaustive enumeration of objects**
- **Example:**
 Assume we want to express *Every student likes vacation*
 Doing this in propositional logic would require to include statements about every student

 \[
 John \text{ likes vacation} \land \\
 Mary \text{ likes vacation} \land \\
 Ann \text{ likes vacation} \land \\
 \cdots
 \]

- **Solution:** Allow quantification in statements

First-order logic (FOL)

- More expressive than **propositional logic**
- **Eliminates deficiencies of PL by:**
 - Representing objects, their properties, relations and statements about them;
 - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object
 - Introducing quantifiers allowing quantification statements over objects without the need to represent each of them separately

- **Predicate logic:** first-order logic without the quantification fix
Logic

Logic is defined by:

• A set of sentences
 – A sentence is constructed from a set of primitives according to syntax rules.

• A set of interpretations
 – An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.

• The valuation (meaning) function \(V \)
 – Assigns a truth value to a given sentence under some interpretation

\[
V : \text{sentence} \times \text{interpretation} \rightarrow \{\text{True}, \text{False}\}
\]

First-order logic. Syntax.

Term - syntactic entity for representing objects

Terms in FOL:

• Constant symbols:
 – E.g. John, France, car89

• Variables:
 – E.g. \(x, y, z \)

• Functions applied to one or more terms
 – E.g. father-of (John)

 father-of(father-of(John))
First order logic. Syntax.

Sentences in FOL:

- Atomic sentences:
 - A predicate symbol applied to 0 or more terms

 Examples:

 Red(car12),
 Sister(Amy, Jane);
 Manager(father-of(John));

 - \(t_1 = t_2 \) equivalence of terms

 Example:

 \(John = father-of(Peter) \)

First order logic. Syntax.

Sentences in FOL:

- Complex sentences:

 Assume \(\phi, \psi \) are sentences. Then:

 - \((\phi \land \psi) \), \((\phi \lor \psi) \), \((\phi \Rightarrow \psi) \), \((\phi \iff \psi) \), \(\neg \psi \)

 and

 - \(\forall x \phi \), \(\exists y \phi \)

 are sentences

Symbols \(\exists, \forall \) - stand for the existential and the universal quantifier
Semantics. Interpretation.

An interpretation I is defined by a **domain** and a **mapping**

- **domain D**: a set of objects in the world we represent;
 domain of discourse;

An interpretation I maps:

- Constant symbols to objects in D
 $I(John) = \circled{John}$
- Predicate symbols to relations, properties on D
 $I(brother) = \{ \langle \circled{John} \circled{Paul} \rangle ; \langle \circled{Paul} \circled{John} \rangle ; \ldots \}$
- Function symbols to functional relations on D
 $I(father-of) = \{ \langle \circled{John} \rightarrow \circled{Paul} \rangle ; \langle \circled{Paul} \rightarrow \circled{John} \rangle ; \ldots \}$

Semantics of sentences.

Meaning (evaluation) function:

$V : \text{sentence} \times \text{interpretation} \rightarrow \{ \text{True} , \text{False} \}$

A **predicate** $\text{predicate}(\text{term-1}, \text{term-2}, \text{term-3}, \text{term-n})$ is true for the interpretation I, iff the objects referred to by $\text{term-1}, \text{term-2}, \text{term-3}, \text{term-n}$ are in the relation referred to by predicate

$I(John) = \circled{John} \quad I(Paul) = \circled{Paul}$

$I(brother) = \{ \langle \circled{John} \circled{Paul} \rangle ; \langle \circled{Paul} \circled{John} \rangle ; \ldots \}$

$\text{brother}(John, Paul) = \langle \circled{John} \circled{Paul} \rangle \quad \text{in } I(brother)$

$V(\text{brother}(John, Paul), I) = \text{True}$
Semantics of sentences.

- **Equality**
 \[V(\text{term-1} = \text{term-2}, I) = \text{True} \]
 Iff \(I(\text{term-1}) = I(\text{term-2}) \)

- **Boolean expressions: standard**
 E.g. \[V(\text{sentence-1} \lor \text{sentence-2}, I) = \text{True} \]
 Iff \(V(\text{sentence-1}, I) = \text{True} \) or \(V(\text{sentence-2}, I) = \text{True} \)

- **Quantifications**
 \[V(\forall x \phi , I) = \text{True} \]
 Iff for all \(d \in D \) \[V(\phi , I[d/x]) = \text{True} \]
 \[V(\exists x \phi , I) = \text{True} \]
 Iff there is a \(d \in D \), s.t. \[V(\phi , I[d/x]) = \text{True} \]

Examples of sentences with quantifiers

- **Universal quantification**

 All Upitt students are smart

 \(\forall x \text{ student}(x) \land \text{at}(x, \text{Upitt}) \Rightarrow \text{smart}(x) \)

 Typically the universal quantifier connects with implication

- **Existential quantification**

 Someone at CMU is smart

 \(\exists x \text{ at}(x, \text{CMU}) \land \text{smart}(x) \)

 Typically the existential quantifier connects with conjunction
Order of quantifiers

• Order of quantifiers of the same type does not matter

 For all x and y, if x is a parent of y then y is a child of x

 $\forall x, y \ \text{parent} \ (x, y) \Rightarrow \text{child} \ (y, x)$

 $\forall y, x \ \text{parent} \ (x, y) \Rightarrow \text{child} \ (y, x)$

• Order of different quantifiers changes the meaning

 $\forall x \exists y \ \text{loves} \ (x, y)$

Order of quantifiers

• Order of quantifiers of the same type does not matter

 For all x and y, if x is a parent of y then y is a child of x

 $\forall x, y \ \text{parent} \ (x, y) \Rightarrow \text{child} \ (y, x)$

 $\forall y, x \ \text{parent} \ (x, y) \Rightarrow \text{child} \ (y, x)$

• Order of different quantifiers changes the meaning

 $\forall x \exists y \ \text{loves} \ (x, y)$

 Everybody loves somebody

 $\exists y \forall x \ \text{loves} \ (x, y)$
Order of quantifiers

- **Order of quantifiers of the same type does not matter**

 For all x and y, if x is a parent of y then y is a child of x

 \[
 \forall x, y \text{ parent } (x, y) \Rightarrow \text{ child } (y, x)
 \]

 \[
 \forall y, x \text{ parent } (x, y) \Rightarrow \text{ child } (y, x)
 \]

- **Order of different quantifiers changes the meaning**

 \[
 \forall x \exists y \text{ loves } (x, y)
 \]

 Everybody loves somebody

 \[
 \exists y \forall x \text{ loves } (x, y)
 \]

 There is someone who is loved by everyone

Connections between quantifiers

Everyone likes ice cream

\[
\forall x \text{ likes } (x, \text{IceCream })
\]

Is it possible to convey the same meaning using an existential quantifier?

There is no one who does not like ice cream

\[
\neg \exists x \neg \text{likes } (x, \text{IceCream })
\]

A universal quantifier in the sentence can be expressed using an existential quantifier !!!
Connections between quantifiers

Someone likes ice cream

\[\exists x \text{ likes} (x, \text{IceCream}) \]

Is it possible to convey the same meaning using a universal quantifier?

Not everyone does not like ice cream

\[\neg \forall x \neg \text{likes} (x, \text{IceCream}) \]

An existential quantifier in the sentence can be expressed using a universal quantifier!!!

Representing knowledge in FOL

Example:

Kinship domain

- **Objects**: people

 \[\text{John, Mary, Jane, …} \]
- **Properties**: gender

 \[\text{Male} (x), \text{Female} (x) \]
- **Relations**: parenthood, brotherhood, marriage

 \[\text{Parent} (x, y), \text{Brother} (x, y), \text{Spouse} (x, y) \]
- **Functions**: mother-of (one for each person x)

 \[\text{MotherOf} (x) \]
Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

- Male and female are disjoint categories
 \[\forall x \ Male (x) \iff \neg Female (x) \]

- Parent and child relations are inverse
 \[\forall x, y \ Parent (x, y) \iff Child (y, x) \]

- A grandparent is a parent of parent
 \[\forall g, c \ Grandparent (g, c) \iff \exists p \ Parent (g, p) \land Parent (p, c) \]

- A sibling is another child of one’s parents
 \[\forall x, y \ Sibling (x, y) \iff (x \neq y) \land \exists p \ Parent (p, x) \land Parent (p, y) \]

- And so on ….