
Knowledge Discovery in a 
Virtual Universe

Data Intensive Scalable Computing 
strategies for large astrophysical datasets

Jeffrey P. Gardner
Andrew Connolly
Cameron McBride

Pittsburgh Supercomputing Center
University of Pittsburgh

Carnegie Mellon University
University of Washington



How to turn astrophysics simulation 
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
on workstation

Step 3: Extract meaningful
scientific knowledge

(happy scientist)Using 300 processors:
(circa 1995)

http://images.google.com/imgres?imgurl=http://www.snia.org/about/images/network_component_icons/Workstation.jpg&imgrefurl=http://www.snia.org/about/images/network_component_icons/&h=530&w=533&sz=37&hl=en&start=3&tbnid=UpogQhJx8EaT7M:&tbnh=131&tbnw=132&prev=/images?q=workstation&svnum=10&hl=en&lr=&client=firefox-a&rls=org.mozilla:en-US:official&sa=N


How to turn astrophysics simulation 
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
on server (in serial)

Step 3: Extract meaningful
scientific knowledge

(happy scientist)Using 1000 processors:
(circa 2000)



How to turn astrophysics simulation 
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
on ???

(unhappy scientist)Using 10,000 cores:
(circa 2008)

X



Exploring the Universe can be 
(Computationally) Expensive

 The size of simulations is no longer 
limited by computational power

 It is limited by the parallelizability of 
data analysis tools

 This situation, will only get worse in the 
future.



How to turn astrophysics simulation 
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
on ???

Using 1,600,000 cores?:
(circa 2012)

X

By 2012, we will have machines that will have millions of 
processor cores!

(Single snapshot: 200TB)



Astrophysical applications are 
often tightly-coupled

 Data and computational domains 
overlap in the extreme

 A single node may need to access data 
on most (if not all) other nodes during 
the computation

 Examples: 
 Group finding

 N-Point correlation functions

 New object classification

 Density estimation



The Challenge of Data Analysis in a 
Multiprocessor Universe

 Parallel programs are expensive to write!
 Lengthy development time

 Parallel world is dominated by simulations:
 Code is often reused for many years by many people
 Therefore, you can afford to invest lots of time writing the 

code.

 Example: GASOLINE (a cosmology N-body code)
 Required 10 FTE-years of development

 Data Analysis does not work this way:
 Rapidly changing scientific queries
 Queries are specific to individual researchers
 Less code reuse

Speed of scalable application development = speed of science



Research Questions

1. Can we substantially reduce the 
development time of tightly-coupled 
astrophysical data analysis 
applications?

2. Can we do this using tools that are

1. Familiar to HPC researchers

2. Able to run on existing HEC platforms



The Challenge of Astrophysics Data 
Analysis in a Multiprocessor Universe

 Astrophysics uses dynamic, irregular data structures:
 Astronomy deals with point-like data in an N-dimensional 

parameter space

 Most efficient methods on these kind of data use space-
partitioning trees.

 The most common data structure is a kd-tree.



The Challenge of Astrophysics Data 
Analysis in a Multiprocessor Universe

 Build a targeted library for distributed-
memory kd-trees that is scalable to thousands
of processing elements

 Lightweight

 Easy to learn

 Language independent

 Platform independent

 Library is application specific

 Useful only for low-dimensional kd-trees



N tropy Performance

10 million particles
Spatial 3-Point
3->4 Mpc

No interprocessor data cache,

No load balancing

Interprocessor data cache,

No load balancing

Interprocessor data cache,

Load balancing



N tropy “Meaningful” Benchmarks

 The purpose of this library is to 
minimize development time!

 Development time for:

1. Parallel N-point correlation function 
calculator

 2 years -> 3 months

2. Parallel Friends-of-Friends group finder

 8 months -> 1 month



Conclusions

 An implicit assumption in Data Intensive 
Scalable Computing is the minimization of 
development time.

 The human component is what differentiates 
DISC from HPC:

1. Need, on scalable resources, for short 
development times.

2. Need, on scalable resources, for interactivity.

 Deployment of lightweight libraries targeted 
towards specific domains is a viable means of 
enabling DISC.


