Knowledge Discovery in a Virtual Universe

Data Intensive Scalable Computing strategies for large astrophysical datasets

Jeffrey P. Gardner Andrew Connolly Cameron McBride

Pittsburgh Supercomputing Center
University of Pittsburgh
Carnegie Mellon University
University of Washington

Step 1: Run simulation

Step 3: Extract meaningful scientific knowledge

Step 3: Extract meaningful scientific knowledge

Using 10,000 cores: (circa 2008)

- The size of simulations is no longer limited by computational power
- It is limited by the parallelizability of data analysis tools
- This situation, will only get worse in the future.

Using 1,600,000 cores?: (circa 2012)

Step 2: Analyze simulation on ???

Step 1: Run simulation

(Single snapshot: 200TB)

By 2012, we will have machines that will have millions of processor cores!

- Data and computational domains overlap in the extreme
- A single node may need to access data on most (if not all) other nodes during the computation
- Examples:
 - Group finding
 - N-Point correlation functions
 - New object classification
 - Density estimation

The Challenge of Data Analysis in a Multiprocessor Universe

- Parallel programs are expensive to write!
 - Lengthy development time
- Parallel world is dominated by simulations:
 - Code is often reused for many years by many people
 - Therefore, you can afford to invest lots of time writing the code.
- Example: GASOLINE (a cosmology N-body code)
 - Required 10 FTE-years of development
- Data Analysis does not work this way:
 - Rapidly changing scientific queries
 - Queries are specific to individual researchers
 - Less code reuse

Speed of scalable application development = speed of science

- 1. Can we substantially reduce the development time of tightly-coupled astrophysical data analysis applications?
- 2. Can we do this using tools that are
 - Familiar to HPC researchers
 - Able to run on existing HEC platforms

The Challenge of Astrophysics Data Analysis in a Multiprocessor Universe

- Astrophysics uses dynamic, irregular data structures:
 - Astronomy deals with point-like data in an N-dimensional parameter space
 - Most efficient methods on these kind of data use spacepartitioning trees.
 - The most common data structure is a kd-tree.

The Challenge of Astrophysics Data Analysis in a Multiprocessor Universe

- Build a targeted library for distributedmemory kd-trees that is scalable to thousands of processing elements
 - Lightweight
 - Easy to learn
 - Language independent
 - Platform independent
- Library is application specific
 - Useful only for low-dimensional kd-trees

Ntropy Performance

Ntropy "Meaningful" Benchmarks

- The purpose of this library is to minimize development time!
- Development time for:
 - Parallel N-point correlation function calculator
 - 2 years -> 3 months
 - 2. Parallel Friends-of-Friends group finder
 - 8 months -> 1 month

Conclusions

- An implicit assumption in Data Intensive Scalable Computing is the minimization of development time.
- The human component is what differentiates DISC from HPC:
 - Need, on scalable resources, for short development times.
 - 2. Need, on scalable resources, for *interactivity*.
- Deployment of lightweight libraries targeted towards specific domains is a viable means of enabling DISC.