Batcher Bitonic sorting algorithm

Basic concepts

• A sequence a_0, \ldots, a_{n-1} is called Bitonic if there is an element a_i, $0 < i < n-1$ such that one of the following is satisfied:
 1) $a_0 \leq a_1 \leq \ldots \leq a_i \geq a_{i+1} \geq \ldots \geq a_{n-1}$ or
 2) $a_0 \geq a_1 \geq \ldots \geq a_i \geq a_{i+1} \leq \ldots \leq a_{n-1}$ or
 3) An index shift will satisfy any of the above two relations

Note: condition 2 is not needed. It can be obtained from 1 and 3.
Theorem: Given a bitonic sequence \(a_0, \ldots, a_{2n-1} \), let

\[
x_i = \min\{ a_i, a_{i+n} \} \quad \text{for } i=0,\ldots,n-1
\]

\[
y_i = \max\{ a_i, a_{i+n} \} \quad \text{for } i=0,\ldots,n-1
\]

Then each of \(x_0, \ldots, x_{n-1} \) and \(y_0, \ldots, y_{n-1} \) are Bitonic sequences and each element in the first sequence is smaller than any element in the second sequence.

Sorting a Bitonic sequence

- Given a n-element bitonic sequence, apply the theorem recursively

- After \(\log n - 1 \) steps, each Bitonic sequence will have only two elements. Which can be trivially sorted.
Bitonic sorting of \(n \) **elements**

1) Sort the first \(n/2 \) elements in ascending order and the last \(n/2 \) elements in descending order.

2) Sort the resulting Bitonic sequence in \(\log n \) steps.

Example: sorting 32 elements

1) Sort sixteen 2-elements bitonic sequences in alternating ascending and descending orders (in one step)

2) Then sort the eight 4-elements bitonic sequences in alternating polarity

To obtain four 8-elements bitonic sequences (in 2 steps).
3) Then sort four 8-elements bitonic sequences

Sort in ascending order | Sort in descending order | Sort in ascending order | Sort in descending order

To obtain two 16-elements bitonic sequences (in 3 steps).

4) Then sort two 16-elements bitonic sequences

Sort in ascending order | Sort in descending order

To obtain one 32-elements bitonic sequences (in 4 steps).
5) Then sort the 32 elements bitonic sequences (in 5 steps).

Computation of execution time:

Log n steps,
Each step, i, requires i sub-steps. Hence

$$\text{number of steps} = \sum_{i=1}^{\log n} i = \frac{1 + \log n}{2} \log n$$