9/11/2017

HPC Fault tolerance

Two well known fault tolerance approaches
— Replication
* Processes are replicated and executed in parallel
* Replication requires twice hardware resources and energy
— Re-execution (optimized using Checkpoints &
Rollback Recovery)
* State is saved periodically
* Rollback to saved state upon failure

Duplication

Different models for replicating communication

@ message @

1) Independent execution 2) Full message duplication

message @ message @
A

3) Only main duplicate messages 4) Main relays messages

9/11/2017

Checkpointing

* Periodically pause execution and save state
* |n event of failure restore from the last saved state

mfeocpensueses

Global checkpoint Local checkpoints Local checkpoints
P (coordinated @ barrier) (coordinated @ barrier)
Global rollback Local rollback

Effect of Barriers on Local Checkpointing

* The Bulk Synchronous Parallel model (BSP)
— Dominant in High Performance Computing
— Pregel: Google’s extension to map/reduce (for analytics)

M
e
e

Barrier

O Qe OO
QO Qe O O
Q Qe OO
Q Qe OO
O Qe O O

9/11/2017

Replication vs. | Checkpointing

° o T/4 + 2 Checkpoints

If each process is duplicated
* Can tolerate a fault in each pair of processes
* But execution time is doubled

T/2

D

But checkpointing is not as good as it looks

Effect of Synchronization/Communication

T/2 T/4 + 2 Checkpoints

Duplication Checkpointing

In large systems, checkpointing may take longer to
execute and may consume more energy

Replication vs. Checkpointing

100 g

920

80

70

60

—— Replication
No Replication

2 50 o ——— S0 — -— 4
£ — L
= 40
30
20
10 i
q i
[CI) 2 B Y % Yo, Yo ‘?000 ’Qoo “"qoo "‘qoo ’o% 90%
Application-visible System Sockets © © © % K4
The tradeoff
Fault Tolerance
|
Checkpointing Lazy Replication
& roll-back Shadowing

Time redundancy

Enables tradeoff Hardware redundancy

between time and
hardware redundancy

9/11/2017

Lazy Shadowing

* Associate a “shadow process” with each main process.

* The shadow runs at e to save

energy

|

Use DVFS (Dynamic Collocate shadows
Voltage and
Frequency Scaling)

O

@ O Slow shadows

@O save dynamic

@O power ()
@O

@O

Save static power

Controlled time
sharing between
mains and shadows

©

© Eliminates CPU
© wasted capacity
© when mains are
© idle.

©

Lazy Shadowing

Work Completed

Main Process

Shadow Process

Task Completes

Shadow Process
Terminates

A\ 4

Time

9/11/2017

Lazy Shadowing with Failure

Main Process

A Fails Task Completes
©
(O]
40—3
o I ‘
1S
o
o
<<
o
=
Main Process
Shadow Process
Shadow Process Increases Speed
After Failure

\%

Time

Work Completed

Duplication < Lazy Shadow < checkpointing

Main Process
Fails

Main Process

Shadow Process

\%

rollback Time

9/11/2017

Shadow’s Speed

Time
0, = Speed of shadow before failure
0, = Speed of shadow after failure

Downsides of being lazy
(Shadow/main divergence)

message message

1) Size of message buffer grows Message

buffer

with shadow/main divergence

Work

2) Time to recover from failure
. . -
grows with divergence Main ivergence

Shadow time

9/11/2017

M(1)

(1)

Effect of Synchronization

,,—”””’

Barrier Barrier

M(2)

()

— |

While a main/shadow pair recovers from a fault,
divergence between other shadow/main pairs is reduced

Leaping Shadows to reduce divergence

Barrier Barrier

,,/”’/”’

/

>

While a main/shadow pair recovers from a fault,
other shadows leap to synchronize their states with their mains

9/11/2017

Forced leaping

* If shadow/main divergence

reaches a threshold,

* Then force the shadow to leap

o

(9

* Shadow leaping (both Fault-induced and Forced) requires
rolling-forward the state of a shadow to the state of its main.

* Shadow leaping applies if execution speed is controlled by
either DVFS or collocation.

Resilience implications of shadow collocation &

If shadows S,,..., Sy are collocated on the same core, then the system
can tolerate only one fault in the mains M, ..., M

A shadowed set

—————

- \ /7
] D[] [
Ma| [ms| |me| L
S7 S8

M7 M8 M9

Promote S2 to M2

Terminate S1 & S3

A vulnerable shadowed set

When many shadowed sets become vulnerable,
the system needs to be rejuvenated.

9/11/2017

Rejuvenating shadows

A shadowed set

Reboot M2

After recovery and roll-forward
(leaping) the shadowed set is
rejuvenated (restores its
resilience).

v % m3 | [PL52 Suspend S1 & S3/°

(\

Recover from failure

——————

~
]
-

M1 m3| |52
S1s3
S4 S5
M4 M5 M6 <6
S7 58
M7 M8 M9 <9
Leap M2 to state of
S2 after recovery
i ST s|”
M1 M2 M3 s |
S4 S5
M4 M5 M6 6
S7 S8
M7 M8 M9 59

Rejuvenation Process

N shadoW

Full Resilience

Restoration

Reduced Rate

Main

Leaping

—

Recovery

(Rebooting)

A 4

9/11/2017

10

9/11/2017

Stealing Shadows

Instead of collocating shadows, collocated a main and a shadow

M1 M2 M3 M4

* Shadowed set size =2
e Can control the speeds of mains and shadows through
scheduling (priority — nice)

* Shadows steal cycles from mains when they are blocked (ex.
waiting for communication or synchronization due to load
imbalance).

* |f put shadows at very low priority, they only advance when
main are blocked (do not impede the speed of the mains)

Stealing Shadows
When a main fails: M2 M3 M4
Synchronization causes
other mains to block
Shadows speed up
automatically S1) s3
No need for shadow leaping
Rejuvination:
After shadow recovers and M3 M4
main reboots, shadow
transfers its state to the
rebooted main

11

