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Seminar Organization

1) Introductory lectures (probably 4)

2) Paper presentations by students (2/3 per short/long class)

- GPU architecture and algorithms

- Reliability of HPC (High Performance Computing)

- Distributed graph processing

- Innovative memory technology for parallel architectures

3) Class projects (typically 2 students per project) 
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Flynn’s hardware taxonomy:

S

M
I

S

M
D

• S for single

• M for multiple

• SISD is a sequential computer.

• SIMD has one sequence of instructions applied to multiple data.

• MIMD has multiple sequence of instructions executing on 

multiple data. 

• An MISD machine – need to be innovative to define it.

• I for instruction

• D for data.

Looks at instructions and data parallelism.  Oldest (1960’s) 

and best known of many proposals.
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SIMD (two flavors)

1) Synchronous, lockstep execution

PE

data

PE

data

PE

data

PE

data

controlprogram

2) Vector processing

PEcontrolprogram

data

All PEs execute the same 

instructions on different data

The same instruction is 

repeatedly executed on 

different data
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MIMD

Multiple programs executing on different data – However, if all PEs are to 

cooperate to solve the problem (as opposed to solving different problems), 

there should be interaction between the programs and/or the data.

Many flavors depending on the memory architecture and the 

address space of each PE (the address space is the range of memory 

addresses that the PE can access).

PE0

data

program

PE1

data

program

PE2

data

program

PE3

data

program
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Interconnection

Mem

PE PE PE

Mem Mem Mem

Global, shared memory (Symmetric Multi-Processors – SMP)

Mem Mem Mem Mem

PE PE PE

PE

Interconnection

PE

Physical memory Architectures

Distributed memory 

Communicate through messages or remote memory access (put/get)

EX: Bus, crossbar, tree, 

multistage network, mesh, …
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Distributed shared memory systems

PE0

Mem

PE1 PE2 PE3

Shared address space, but physically distributed memory.

• No need for message passing – communicate through shared memory 

locations.

• Data is physically distributed, but a runtime system is responsible to access 

data that do not reside in the local memory.

Mem Mem Mem

Interconnection network 

Results in the so called “Non Uniform Memory Access” – NUMA 

(as opposed to UMA, “Uniform Memory Access”)

A system may have shared memory among groups of nodes 

while communication among groups is through messages 
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Programming parallel computing systems

Program

(using some programming model)

Parallel processes (threads) 

Compiler

Access to address space 

Parallel architecture 

(Multiple processors and a physical memory architecture)

Run-time system

+

Note the decoupling between the programming model and the physical 

architecture – For instance, a parallel program can run on a single processor!!!.
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Parallel Programming Models (control threads - processes).

1) Start with one control thread, and 

create other threads when needed

2) Start with multiple control threads –

usually multiple copies of the same 

program (SPMD – single program, 

multiple data).

How do you make the same program do 

different things???

Examples: Pthreads (explicit thread creation) 

and OpenMP (implicit thread creation).
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Parallel Programming Models (scope of variables).

2) Variables declared private to a process or thread

1) Variables declared shared among threads or processes – any process can 

read/write to these variables. 

Problems with race conditions???

To make the value of a private variable available to other processes, one 

has to either exchange messages, or copy the value to a shared variable.

A programming model can combine private and shared 

variables, as well as allow message passing.
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Example - Pthreads

int main(int argc, char *argv) {

double A[100]  ;    /* global, shared variable*/

int i ;

…

for (i = 0; i < 4 ; i++)  pthread_create( … , DoStuff, int i ) ;

…   /* execution continues in parallel with 4 copies of DoStuff*/

…

for (i = 0; i < 4 ; i++)  pthread_join (… , DoStuff, …) ;

…

}

void DoStuff (int threadID) {

int  k ;  /* k is a local variable – each instance of DoStuff has a copy*/

…       /* do stuff in parallel with main */

for (k = threadID*25 ; k < (threadID+1)*25 ; k++) … do something with A[k] …

…

}

The five threads can be executed on separate CPUs or time_shared on one CPU
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Example - OpenMP
int main(){     

print(“Start\n”);

…   /* serial code */

#pragma omp parallel {

…

printf(“Hello World\n”);

…

}

…     /* resume serial code */

printf(“Done\n”);

}

% Result of execution

Start

Hello World

Hello World

Hello World

Hello World

Done

The user can control the number of parallel threads 

by setting the environment variable

setenv OMP_NUM_THTREADS 4 

…
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Example - OpenMP

#define n 1000

int main(){     

int i, a[n], b[n], c[n] ;

…

…

#pragma omp for shared(a,b,c), private(i)  

{ for (i = 0; i < n ; i++)    

c[i] = a[i] + b[i] ;  

}  /* end of parallel section */

…     /* resume serial code */

…

}

The loop will be automatically broken down into smaller 

loops and each small loop will be given to one thread 

...

Warning: the loop iterations should be 

independent (no loop carried dependences)
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Example – a message passing program

int main(){     

int x ,sum,  i ;   /* local variables */

…

call a function to get the num_processors ;

call a function to get your processorID ;

…

compute a local value for x;

…

if (processorID > 0)

send the value of x to processor 0 ;

else {

sum = x ;

for (i = 1; i < num_processors ; i++)    

{ receive a value from processor i ;

add that value to sum

} 

} ;

…

}

The number of processors 

(threads) is specified before 

execution starts

processID =  0          1          2           3

x = 10        20        40        80 

20 30 40

sum = 10

sum = 30

sum = 70

sum = 150

sum =  150         ??       ??       ??
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Type of messages

 Point-to-point: one processor sends a 

message to another processor

 One-to-all: one processor broadcasts a 

message to all other processors

 One-to-all personalized: one processor 

sends a different message to each other 

processor

 All-to-all: each processor broadcasts a 

message to all other processors

 Reductions: the values from each processor 

are reduced (according to an operator) and 

broadcast to all processors

Pi Pj

Pi

Pk

P0

…

Pi

Pk

P0...

Pk

P0

Pk

P0

…+

...

16

Blocking and non-blocking  messages

 Depending on the type of call, a process issuing a blocking send does not 

continue execution until

The message is copied to the send buffer

The message is sent on the network

The message reached the receive buffer

The message is received by the receiving process.

 A process issuing a non-blocking send continues execution immediately 

without making sure that the message is sent.

 A process that issues a blocking receive does not continue execution 

before the message is received.

 A process that issues a non-blocking receive does continue execution if  

the message is not in the receive buffer – can check the buffer later.

sender Send buffer receiverReceive buffernetwork
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The master/slave programming model

f(x)

x
b

...
d

The numeric integration example

master

slave slaveslave slave

• Master divides the work into work_units ;

• While work is not done {

Wait for an available slave ;

Send a work unit to the available slave

}

n = 10000 ;  d = b / n ;

area = 0 ;

for (i=0 ; i < n ; i++) {

x = i * d + d / 2; 

area = area + f(x) * d ;

}
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Numerical integration - a master/slave approach

Program for processor 0 (master)

next_ld = 0 ; work_unit = 10 ;

for( i =1; i<=K; i++) {

send next_ld to processor i ;

next_ld = next_ld + work_unit 

} ;

while  (next_ld + work_unit < n) {

wait for a message from any processor ;

when you get a message from processor i,   

{ add the received p_area to area ;

send next_ld to processor i ;

next_ld = next_ld + work_unit 

}

}

for ( i =1; i<=K; i++) 

send a termination message to processor i ;

While (true) {

Receive a message from processor 0 ;

If not a termination message {

get the value of next_ld ;

p_area = 0 ;

for (i=next_ld; i< next_ld+work_unit; i++) {

x = i * d + d / 2; 

p_area = p_area + f(x) * d ;

}

send p_area to processor 0 ;

}

Program for processors 1 , … , K-1 (slaves)

What is the effect of the work_unit granularity on 

performance?

Example: using distributed memory (may also use shared memory??)
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The BSP programming model

• Introduced by Valiant in the 90’s

Repeat{

Compute ;

Send messages ;

Receive message ;

Barrier syncronization;

Reduction to check convergence;

} until converge

• Pregel: A System for Large Scale Graph Processing (think like a vertex)

20

Think like a vertex 

• Find the maximum values in the nodes of a graph

12

63

Superstep 0

62

66

Superstep 1

66

66

Superstep 2

66

66

Superstep 3

The Think like a vertex paradigm may apply 

to either shared or distributed memory models 
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Synchronization (race conditions)

 A critical section is a section of code that can be executed by one 

processor at a time (to guarantee mutual exclusion)

 locks can be used to enforce mutual exclusion

setenv OMP_NUM_THREADS 4 

int main(){     

int i = 0 ;  /*initialized global variable */

#pragma omp

{

i = i + 1     

}

Print the value of i ;

}

What is the output of the following OpenMP program??

i

P0 P1 P2 P3
Read i from memory

Add 1 to i

Write i to memory

Declare a lock  
#pragma omp

{  get the lock ;

i = i + 1  ;

release the lock ;   

}

Most parallel languages 

provides ways to declare and

use locks or critical sections

22

Synchronization (barriers)

int main(int argc, char *argv) {

double A[101] , B[101], C[100] ;    /* global, shared variables*/
for (i = 0; i < 101 ; i++)  A[i] = B[i] = i ;
for (i = 0; i < 4 ; i++)  pthread_create( … , DoStuff, int i ) ;

…

for (i = 0; i < 4 ; i++)  pthread_join (… , DoStuff, …) ;

Print the values of C ;

}

void DoStuff (int threadID) {

int  k ; 

for (k = threadID*25 ; k < (threadID+1)*25 ; k++) B[k] = 2 * A[k] ;

…..

for (k = threadID*25 ; k < (threadID+1)*25 ; k++) C[k] = 2 * B[k+1] ;

}

What is the output of the following Pthread program??

Barrier
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• Total solution time:

1)Computation time (more processors = faster computation)

2)Communication time (more processors = more communication)

Tradeoff between computation and communication

Effect of communication

Number of

processors

Communication time

solution time

Computation time

time
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Hardware Multi-threading

• Software-based thread context switching (Posix Threads)

– Hardware traps on a long-latency operation

– Software saves the context of the current thread, puts it on hold and starts the 

execution of another ready thread

– Relatively large overhead (saving old context and loading new context)

– Context = registers, PC, stack pointer, pointer to page table, …. 

• Hardware-based multithreading 

– Threads = user defined threads or compiler generated threads 

– Replicate registers (including PC and stack pointer)

– Hardware-based thread-context switching (fast)

– May multithread independent processes if TLB is replicated
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Scheduling multiple threads

• Fine-grain multithreading

– Switch threads after each cycle

– Interleave instruction execution

– If one thread stalls, others are executed

• Coarse-grain multithreading

– Only switch on long stall (e.g., L2-cache miss)

– Simplifies hardware, but doesn’t hide short stalls (eg, data hazards)

• SMT: Simultaneous Multi Threading

– Schedule instructions from multiple threads

– Instructions from independent threads execute when ready

– Dependencies within each thread are handled separately

Instruction

cache
RF1

Add Pipeline 1 

PC1
Add Pipeline 2

Multiply Pipeline

Load/store Pipeline

PC2

PC3

PC4

4 register files, one 

for each thread

RF2 RF3 RF4

4 program counters, 

one for each thread Multiple pipelines (not necessarily 4)
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SMT Examples

This example assumes the 

capability of issuing 4 

instructions on four 

pipelines

Single thread execution

Multithread execution
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Example of Parallel algorithms

28

Parallelizing an algorithm

Numerical integration - a message passing example

f(x)

x

n = 1000 ;  d = b / n ;

area = 0 ;

for (i=0 ; i < n ; i++) {

x = i * d + d / 2; 

area = area + f(x) * d ;

}

b

...
d

f(x)

x
b

P0         P1        P2       P3

Divide the work among 4 processors, so that 

each processor computes a section of the area

n = 1000 ;  d = b / n ;

p_area = 0 ;    /* local variable */

id = my processor id ;  /* 0,1,2,3 */

for (i=id * 250 ; i < (id+1)*250 ; i++) {

x = i * d + d / 2; 

p_area = p_area + f(x) * d ;

}

Exercise: rewrite for K processors.
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If (id mod 2 == 1) 

send p_area to processor id-1 ;

else { receive the p_area from processor id+1 ;

add the received value to the local p_area };

Numerical integration 

still need to accumulate the partial areas

Processors 1, … , K-1 can send their values to processor 0, and processor 0 will 

do the accumulation – takes K-1 time steps to complete.

A more efficient way is to use a recursive doubling technique.

21

13
8

27

1314

48

5 2 9 4 8 6 5 8

P0      P1    P2     P3    P4      P5     P6     P7 
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If (id mod 2 == 1) 

send p_area to processor id-1 ;

else { receive the p_area from processor id+1 ;

add the received value to the local p_area };

If (id mod 4 == 2) 

send p_area to processor id-2 ;

elseif (id mod 4 == 0)

{ receive the p_area from processor id+2 ;

add the received value to the local p_area };

Numerical integration 

still need to accumulate the partial areas

Processors 1, … , K-1 can send their values to processor 0, and processor 0 will 

do the accumulation – takes K-1 time steps to complete.

A more efficient way is to use a recursive doubling technique.

21

13
8

27

1314

48

5 2 9 4 8 6 5 8

P0 P1    P2 P3    P4 P5     P6 P7 
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Numerical integration 

still need to accumulate the partial areas

Processors 1, … , K-1 can send their values to processor 0, and processor 0 will 

do the accumulation – takes K-1 time steps to complete.

A more efficient way is to use a recursive doubling technique.

21

13
8

27

1314

48

5 2 9 4 8 6 5 8

P0 P1    P2     P3    P4 P5     P6     P7 

If (id mod 2 == 1) 

send p_area to processor id-1 ;

else (id mod 2 == 0) 

{ receive the p_area from processor id+1 ;

add the received value to the local p_area } ;

If (id mod 4 == 2) 

send p_area to processor id-2 ;

elseif (id mod 4 == 0)

{ receive the p_area from processor id+2 ;

add the received value to the local p_area } ;

If (id mod 8 == 4) 

send p_area to processor id-4 ;

elseif (id mod 8 == 0)

{ receive the p_area from processor id+4 ;

add the received value to the local p_area };
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If (id mod 2 == 1) 

send p_area to processor id-1 ;

else (id mod 2 == 0) 

{ receive the p_area from processor id+1 ;

add the received value to the local p_area } ;

If (id mod 4 == 2) 

send p_area to processor id-2 ;

elseif (id mod 4 == 0)

{ receive the p_area from processor id+2 ;

add the received value to the local p_area } ;

If (id mod 8 == 4) 

send p_area to processor id-4 ;

elseif (id mod 8 == 0)

{ receive the p_area from processor id+4 ;

add the received value to the local p_area };

Accumulating the partial areas

Assuming K processors

K = number of processors ;

for (i=1 ; i <= log K ; i++) {

If (id mod 2i == 2i-1) 

send p_area to processor id - 2i-1;

elseif (id mod 2i == 0)

{ receive the p_area from processor id + 2i-1 ;

add the received value to the local p_area };

}
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Parallelizing an algorithm

Matrix/matrix multiplication - an example

for i = 0, … , m-1

for j = 0, … , m-1 {

c[ i,j ] = 0  ;

for k = 0, … , m-1

c[ i,j ] =+ a[ i,k ] * b[ k,j ] 

}

Assuming m2 processors with shared memory, each processor executes:

Get the processor id /* 0 <= id < m2 */

i = id / m  ; j = id mod m ;

c[ i,j ] = 0  ;

for k = 0, … , m-1

c[ i,j ] =+ a[ i,k ] * b[ k,j ]

• What if the number of processors, K = m and not m2 ??

• What if K = m/q , for some integer, q, ??
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mxm matrix/matrix multiplication using 4 processors

(m is a multiple of 4)

for i = 0, … , m-1

for j = 0, … , m-1 {

c[ i,j ] = 0 ;

for k = 0, … , m-1

c[ i,j ] =+ a[ i,k ] * b[ k,j ]

}

Get processor id,  /* 0, 1, 2, 3 */

for i = id*(m/4), … , (id+1)*(m/4)-1

for j = 0, … , m-1 {

c[ i,j ] = 0 ;

for k = 0, … , m-1

c[ i,j ] =+ a[ i,k ] * b[ k,j ]

}

= *

P0

P1

P2

P3
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What if we have a distributed memory system?

= *

C0

C1

C2

C3

A0

A1

A2

A3

B0 B1 B2 B3

P

0

C0, A0, B0

P

1

C1, A1, B1

P

2

C2, A2, B2

P

3

C3, A3, B3

P

0

C0, A0, B1

P

1

C1, A1, B2

P

2

C2, A2, B3

P

3

C3, A3, B0

P

0

C0, A0, B2

P

1

C1, A1, B3

P

2

C2, A2, B0

P

3

C3, A3, B1

P

0

C0, A0, B3

P

1

C1, A1, B0

P

2

C2, A2, B1

P

3

C3, A3, B2

Start with this memory 

allocation

Then shift the allocation 

of B

Shift once more

And yet, once more
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Note the mapping between local arrays a, b & c, and the global arrays A, B & C :

a[ i, j] = A[ i + id*(m/4), j] c[ i, j] = C[ i + id*(m/4), j]

b[ i, j] = B[ i, j + id*(m/4)] 

=

C0

C1

C2

C3

The distributed memory program

P0

P1

P2

P3

float c[m/4,m] = 0   ;

float a[m/4,m] ; b[m,m/4] ;             /* local variables hold initial allocation*/

for i = 0, … , m/4 - 1   /* id is the processor identifier */

for j = 0 , … , m/4 -1

for k = 0, … , m-1

c[ i , j+ id*(m/4)] =+ a[ i,k ] * b[ k,j ]

= *

C00

C10

C20

C30

A0

A1

A2

A3

B0 B1 B2 B3

P0

P1

P2

P3

C03

C13

C23

C33

C01

C11

C21

C31

C02

C12

C22

C32

P0  P1  P2  P3
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The distributed memory program

float c[m/4,m] = 0   ;

float a[m/4,m] ; b[m,m/4] ;     /* local variables hold initial allocation*/

for i = 0, … , m/4 – 1             /* step 1 */

for j = 0 , … , m/4 - 1

for k = 0, … , m-1

c[ i , j+ id*(m/4)] =+ a[ i,k ] * b[ k,j ] ;    

send b[ . , .] to processor (id-1) mod 4 ;

receive b[ . , .] from processor (id+1) mod 4 ;

for i = 0,  … , m/4 - 1                /* step 2 */

for j = 0 , … , m/4 - 1

for k = 0, … , m-1

c[ i , j + ((id+1) mod 4 )*(m/4)] =+ a[ i,k ] * b[ k,j ] ; 

= *

C00

C10

C20

C30

A0

A1

A2

A3

B0 B1 B2 B3

P0

P1

P2

P3

C03

C13

C23

C33

C01

C11

C21

C31

C02

C12

C22

C32

P1  P0  P3  P2

What happens

if we do the 

receive first?
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The distributed memory program

= *

P0 P1 P2 P3

Step 1

= *
Step 2

= *
Step 3

= *
Step 4



39

Parallel sorting (odd-even transposition sort)

Each processor, Pi , owns a value, xi , i=0, … , K-1

Result: x0 < … < xK-1

for t=1 , ... , K

if (i+t is odd) and (i > 0), then xi = max(xi , xi-1 )

else if (i+t is even) and (i < K-1) then xi = min(xi , xi+1)

Each Pi executes

P0 P1 P2 P3 P4 P5 P6 P7 P8

5             2             8            6            3             7            9             4             1   

5             2             8            3            6             7            9             1             4   

2             5             3            8            6             7            1             9             4   

2             3             5            6            8             1            7             4             9  

2             3             5            6            1             8            4             7             9   

2             3             5            1            6             4            8             7             9   

2             3             1            5            4             6            7             8             9   

2             1             3            4            5             6            7             8             9   

1             2             3            4            5             6            7             8             9   
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Discussion

• Can we write an odd-even sort, message passing, algorithm?

• How can we modify the algorithm if the number of data items 

to be sorted is much larger than the number of processors?

Processor, Pi , is storing a value, x /* a local variable */

Result: the value of x stored in Pi is smaller than the value of x stored in Pi+1

for t=1 , ... , K {

if (t is odd) { if (i is odd) and (i < K-1) {

send x to processor i+1 ;

y  = the value received from processor i+1 ;

x  = min(x , y) } ;

if (i is even) and (i > 0) {

send x to processor i-1 ;

y  = the value received from processor i-1 ;

x  = max(x , y) } 

};

if (t is even) ……

Each Pi executes
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Parallelizing an algorithm

Finite differences for solving PDEs - an example

• Discretize the dependent variable into the values u(i,j), i,j = 0,…,n+1 (at grid points)

• The values u(0,*), u(n+1,*), u(*,0) and u(*,n+1) are known (boundary conditions)

• To solve, iterate 

u(i,j) = f (u(i,j) , u(i-1,j) , u(i,j-1) , u(i,j+1) , u(i+1,j))  ,        i,j = 1,…,n

u(i,j-1) u(i,j) u(i,j+1)

u(i-1,j)

u(i+1,j)

until convergence. The function f() depends on the form of the PDE.

• Convergence  is when the maximum change in u(i,j) < d

42

Parallel finite differences for solving PDEs

• Subdivide the grid into sub-grids and assign one sub-grid to each processor.

• Each processor will compute the values of u() in its sub-domain.

• Each processor will have to communicate at the beginning of each iteration 

to share boundary u() values with its four neighbors.

• Processors will have to communicate at the end of each iteration to check 

for convergence.
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Parallel finite differences for solving PDEs

• Which of the following two domain partitioning is more efficient??

P0

P1
P2
P3
P4
P5
P6
P7

P0 P1 P2 P3

P4 P5 P6 P7
n

n

P8 P9 P10 P11

P12 P13 P14 P15

n/4

n/4

P8
P9
P10
P11
P12
P13
P14
P15

n

n/16
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Parallelizing an algorithm

Particle-particle simulation - an example

• N particles in a 2D area (or 3D volume)

• A gravitational force between every pair of 

particles (can be computed)

• A resultant force on each particle induces a 

motion.

• Divide time into discrete steps, D, and iterate 

over time.

• During each D, compute the force on each 

particle – N2 forces.

• Compute the velocity and acceleration of each 

particle, and change its position accordingly.

Discrete time simulation:

How should we deal 

with boundaries?
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Particle-particle simulation

• To reduce the computation in each 

iteration from O(N2) to O(N), when 

computing the force on a particle, P, 

consider only the effect of particles within 

a given radius, r, of P.

• Compute the new position of P at the end 

of the interval D .

for t = 1, 2, 3, …

for every particle, P,  in the domain

{ compute the resultant force on P ;

change the position of P } ;
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Parallelizing the particle-particle simulation

• Processors need to communicate the attributes 

of the particles in border bands of width r.

• Partition the domain into sub-domains

• Assign one processor to each sub-domain

• Each processors simulates the motion of the 

particles in its sub-domain.

• After the new positions are computed, particles 

may change sub-domains – may have to move 

data to reassign particles to processors.

Note that sub-domains may not contain 

the same number of particles – load inbalance
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Balanced partitioning of sub-domains

Partition the domain using the 

nested bisection scheme.

• Divide the domain, vertically, into 

two sub-domains with equal 

number of particles.

• Divide each of the two sub-domains, 

horizontally, into two sub-domains 

with equal number of particles.

• Divide each of the four sub-domains, 

vertically, into two sub-domains 

with equal number of particles.


