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As the computing world evolves, the
need for faster, feature-rich, and cost-effective
solutions increases. To obtain higher perfor-
mance, designers are building more features
in hardware using application-specific inte-
grated circuit and field-programmable gate
array technology.

Many applications encounter sorting and
range search problems. For example, in layer
4 switching, you might search for a port num-
ber in a set of port ranges. Range search is also
a commonly performed operation in packet
classification.1-4

Another example of sorting and range search
problems occurs in a distributed-storage net-
working scenario where many hosts might
access shared data at very high speeds. The hosts
protect their access by locking the accessed
address range. A device might check whether
another device is already accessing a specific
location before beginning a memory access.

More generally, before locking a range, a
device might check for whether any address
in the range overlaps with ranges that other
devices are accessing. The set of ranges
changes dynamically, as devices add new locks
and release old ones.

In fact, range search is a key component of
the general locking problem. Other high-speed
locking applications occur in memory protec-
tion, Small Computer System Interface (SCSI)
Reserve in multihost environments, memory

accesses between processes, and accesses to a
shared memory in multiprocessor environ-
ments. Range search is also useful in memory
management to ensure that processes access
only the allocated memory ranges.

We studied two types of range search
problems:

• The point intersection problem deter-
mines whether a set of ranges contains a
query point. The application might
dynamically insert or delete ranges from
the set.

• The range intersection problem deter-
mines whether a query range intersects
with any range in a set of ranges.

These are classic problems in computing, and
several RAM-based solutions exist.2,5-7

Here, we present several ternary content-
addressable memory (TCAM)-based algo-
rithms for the dynamic point and range
intersection problems, both for disjoint and
nondisjoint ranges.

A TCAM stores data with three logic val-
ues: 0, 1, or X (don’t care). Each TCAM entry
contains a value and a mask. The entries are
stored in the TCAM in decreasing order of
priority. The TCAM compares a given input
against all the entries in parallel, returning the
first entry that matches the input. An entry
matches the input if the input and the entry
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values are identical in the unmasked bits.
Initially, routers and switches primarily used

TCAMs to perform forwarding lookups for
Internet Protocol addresses. TCAMs can also
easily perform longest-prefix matching. Cur-
rently, networking products use TCAMs for
packet classification, network address transla-
tion, route lookups in storage networks, layer
4 to layer 7 switching, server load balancing,
label switching, and high-performance fire-
wall functions. Because several networking
products already use TCAMs, designers could
easily leverage the TCAMs in these products
to solve other problems.

Using our algorithms, you can efficiently
perform sorting and priority queue opera-
tions. We provide a scheme to perform inserts
and deletes to a sorted list in O(1) time.
Searching and maintaining a sorted list of
numbers is a common operation in many
high-speed applications.

Point and range intersection problems
In this section, we formally define the point

intersection and range intersection problems.
Let S be a set of ranges, S = {[s1, t1], [s2, t2], ...,
[sn, tn]}, where si and ti and are integers such
that 0 ≤ si ≤ ti ≤ W, ∀i. W is a bound on the
largest endpoint of the ranges.

Without loss of generality, we assume the
ranges are inclusive. That is, range [si, ti]
includes si and ti.

We summarize the point intersection prob-
lem as follows: Given integer x, 0 ≤ x ≤ W,
determine whether any range in S contains x.
We call this a search operation. We also need
to support the dynamic insertion and dele-
tion of ranges to the set.

The point intersection problem has two fla-
vors. In the first case, the ranges in S are dis-
joint—they do not overlap. We call this case the
point intersection problem for disjoint ranges.
Figure 1 shows an example of point intersection
for three disjoint ranges. In the general case, the
ranges in S may not be disjoint.

We define the range intersection problem
as follows: Given a query range, determine
whether any range in S intersects with x.
Again, set S can change dynamically.

Related work
Researchers have proposed several RAM-

based solutions for the range search prob-

lem.5,6 In general, the data structures are very
efficient but not easily realizable in hardware.
The best-known theoretical result for solving
the static point intersection problem takes
O[log(log W )] memory accesses using space
O(n) with a large preprocessing time, and the
constants involved are of moderate size.

The best-known theoretical result for sort-
ing using RAM requires O[nlog(log n)] oper-
ations; however, we acknowledge that this is
only a theoretical result and unsuitable for
practical implementation.8

Our goal here is to provide efficient algo-
rithms for TCAMs that are easily imple-
mentable in hardware. Furthermore, the
constants in our algorithms’ time and space
complexity are smaller than those of most
RAM-based solutions.

One scheme to solve the point intersection
problem for disjoint ranges using a TCAM is
to break each range into at most 2logW ranges
(http://www.sibercore.com/products_App-
Notes.htm).4 This enables search in one
lookup but uses up to 2log W TCAM entries
per range, and uses O(logW ) TCAM opera-
tions for insertions and deletions.

For the disjoint case, we provide algorithms
that use two prefix entries per range and per-
form search, insertion, and deletion in two
TCAM operations. Furthermore, our algo-
rithms do not require maintaining tree data
structures.

Our results
We provide different algorithms for the case

when the ranges are disjoint and for the gen-
eral case.

For disjoint ranges, we first present results
for algorithm PIDR_OPT in Table 1; it solves
the point intersection problem. PIDR_OPT
uses only two TCAM lookups to perform a
search operation, two TCAM operations for
a range insertion operation, and two TCAM
entries per range in the set.

An enhancement of this algorithm yields algo-
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Figure 1. Example of point intersection for disjoint ranges.



rithm RIDR_OPT for the range intersection
problem. As Table 2 shows, this algorithm uses
two TCAM lookups for search, four TCAM
operations for range insert, and four TCAM
entries per range. These algorithms assume
longest-prefix matches during TCAM lookups.

Ensuring longest-prefix matches during
TCAM lookups requires TCAM space man-
agement.9 To avoid this overhead, we present
other solutions. Algorithms PIDR2 and
RIDR2 eliminate the longest-prefix match
requirement by using a TCAM of double the
width. However, these algorithms use 2log(log
W ) TCAM lookups per search operation. The
other operations’ time and space complexity
remain the same.

Even without using a wider TCAM and
without assuming longest-prefix lookups, we
have a solution (PIDR3) for point search that
uses log W TCAM operations for a point
search and one TCAM operation for a range
insertion. PIDR3 uses only one TCAM entry
for each range. In fact, this algorithm does not
even use the TCAM’s ternary nature and is
implementable using a CAM. Again, we pro-
vide a similar solution (RIDR3) for the range
intersection problem.

The case in which the ranges are not dis-
joint is more difficult. For the general, dynam-
ic range search problem, prior art requires one
TCAM lookup for a search operation and

O(log W ) TCAM inserts for an insert oper-
ation, and uses O(log W ) TCAM entries per
range.4 We present algorithms PI_OPT and
RI_OPT that use constant time for search,
constant space per range, and O(log W ) time
for insertions and deletions. We summarize
the results for these algorithms in Table 3.

These algorithms assume longest-prefix
matches. Again, we can eliminate this require-
ment (in algorithms PI2 and RI2) by using a
double-width TCAM and increasing the
worst-case lookup time to O[log(log W )].

Finally, we provide simple, practical CAM-
based solutions PI3 and RI3 that use O(log
W ) time for all operations and constant space
per input range.

With these algorithms, you can perform
sorting in O(n) time. Furthermore, you can
perform insertions and deletions to a sorted list
and to priority queue operations in O(1) time.

Algorithms for disjoint range problems
A central concept in our algorithms is deter-

mining the longest common prefix of any two
points s and t, denoted by LCP(s, t). Given
range R = (s, t), we can compute the LCP, P, for
that range by determining the longest common
prefix of its endpoints. We say that P is the LCP
for range R. Points P01 ... 1 and P10 ... 0 must
be present in range R. This implies that for a
set of disjoint ranges, the LCP for each range is
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Table 1. Point intersection for disjoint ranges.

No. of 
No. of operations No. of 

TCAM lookups per insertion  TCAM entries 
Algorithm per search or deletion per range TCAM requirement
PIDR_OPT 2 2 2 Assumes longest-prefix matches
PIDR2 2log(log W) 2 2 Double-width TCAM entry
PIDR3 log W 1 1 None

Table 2. Range Intersection for disjoint ranges.

No. of 
No. of operations No. of 

TCAM lookups per insertion  TCAM entries 
Algorithm per search or deletion per range TCAM requirement
RIDR_OPT 2 4 4 Assumes longest-prefix matches
RIDR2 2log(log W) 4 4 Double-width TCAM entry
RIDR3 log W 2 2 None



unique. So we can say that R is the range for P.

Point intersection
A point x matches P if P is a prefix of x. Any

query point x that belongs to a range must
match the LCP for that range.

We must check whether x belongs to a range
only if x matches its LCP. Unfortunately, x could
match the LCPs for many ranges, and we would
need to check this for all such ranges, because
the LCPs themselves could be prefixes of each
other. This situation poses the following inter-
esting question: Is it sufficient to examine only
the longest LCP matching x? If so, it would suf-
fice to perform the range check for only the
longest matching LCP. However, we can show
this statement to be false. Surprisingly, a vari-
ant of this statement turns out to be true.

We prove that by appropriately modifying
the set of LCPs and dividing it into two class-
es, you need only look at the longest prefix in
each class, as follows. To simplify the presen-
tation, we assume that all ranges are at least of
length two. It is easy to handle point ranges
seamlessly.

For each LCP P, look at prefixes P1 and P0
obtained by extending P by one bit. We call
these prefixes extended LCPs (ELCPs), where
P1 is a 1-ELCP and P0 is a 0-ELCP.

If x matches an LCP, it must then match one
of its two ELCPs. Further, the ELCPs for range
R divide the range into two parts. The points
on the left part match the 0-ELCP, and the
points on the right part match the 1-ELCP.

For each range [s, t] in the set, we produce
the pair of ELCPs, and divide the ELCPs into
two classes, placing the 0-ELCPs in class C0

and the 1-ELCPs in class C1. In theorem A,
we prove that for disjoint ranges, if x is in

range R, then either the 0-ELCP or the 1-
ELCP for R must be the longest prefix in its
class that matches x.

This gives us the following algorithm for solv-
ing the point intersection problem for disjoint
ranges. Store the 0-ELCPs for the input ranges
in TCAM class C0 and 1-ELCPs in separate
TCAM class C1. To search for point x, we look
up the longest matching prefixes in C0 and C1,
and check whether x lies in any of their ranges.
To enable this check, we store the left endpoint
for its range with each 0-ELCP and the right
endpoint of its range with each 1-ELCP.

The algorithm in Figure 2 uses two TCAM
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Table 3. Point and range intersection with possibly nondisjoint ranges.

No. of 
No. of operations No. of 

TCAM lookups per insertion  TCAM entries 
Algorithm per search or deletion per range TCAM requirement
PI_OPT or RI_OPT 4 4log W 4 Assumes longest-prefix matches
PI2 or RI2 4log(log W) 2log W 4 Double-width TCAM entry
PI3 or PI3 log W 2log W 2 None
Prior art

PI 1 2log W 2log W None
RI 2 3log W 3log W None

// ELCP→q stores the left endpoint of its range if
// it is 0-ELCP and the right endpoint if it is 1-ELCP

PIDR_Search (x) {
ELCP0 = Lookup x in class C0
if (there exists ELCP0) and (x ≥ ELCP0→q)

return (ELCP0→range)
ELCP1 = Lookup x in class C1
if (there exists ELCP1) and (x ≤ ELCP1→q)

return (ELCP1→range)
}

insert (s, t) {
P = longest_common_prefix(s, t);
store P0* in TCAM class C0 and point it to s.
store P1* in TCAM class C1 and point it to t.

}

delete (s, t) {
P = longest_common_prefix(s, t);
// To locate ELCPs exactly, pad P as follows
lookup P01…1 in the class C0.
Delete that entry
lookup P10…0 in the class C1.
Delete that entry.

}

Figure 2. Algorithm PIDR_OPT.



lookups for a search operation, two TCAM
operations for insert and delete, and two
TCAM entries per range.

Theorem A. For a set of disjoint ranges, if x is
in range R in the set, then either the 0-ELCP
or the 1-ELCP for R must be the longest pre-
fix in its class that matches x.

Proof. Let P denote the LCP for R; x must
match one of the ELCPs, P1∗ or P0∗ (the
asterisk denotes any string of 0s or 1s and indi-
cates that P1 and P0 are prefixes). Without
loss of generality, assume that it matches P1∗.
We must prove that class C1 doesn’t contain
longer prefixes that match x.

Let us assume the contrary, saying that x
matches a longer prefix in C1. If so, the prefix
must be of the form P1Q1∗, where Q is a
binary string.

Let R ′ denote the range for the ELCP, 
P1 Q1∗. We will prove that ranges R and R ′
must have at least two points in common,
which poses a contradiction. These two points
are u = P1Q01 ... 1 and v = P1Q10 ... 0 (We
use 0 ... 0 to denote an unspecific number of
zeroes and 1 ... 1, an unspecific number of
ones.) Because P1Q is the LCP for range R ′,
clearly the above points are in R ′. To prove
that they are in R, we will show that they lie
between two points in R.

Consider y = P01 ... 1. Clearly, u and v are
greater than y. Also, because x matches P1Q1∗,
u < x, and v ≤ x. So we have : y < u < v ≤ x.

Clearly y is in R; x is given
to be in R. So, u and v must
be in R, thus posing a contra-
diction.

Note that the proof works
even if the ranges intersect
only at their endpoints. That
is, in set S = {[s1, t1], [s2, t2], ...,
[sn, tn]}, ti can equal si+1.

We will use this fact for
solving the range intersection
problem.

Example
We now apply our algo-

rithm to the example in Fig-
ure 1, treating all numbers as
8-bit quantities. The LCPs of
the three ranges turn out to

be 000∗∗∗∗∗, 001∗∗∗∗∗, and 0∗∗∗∗∗∗∗.
The 0-ELCPs are 0000∗∗∗∗, 0010∗∗∗∗, and
00∗∗∗∗∗∗. The 1-ELCPs are 0001∗∗∗∗,
0011∗∗∗∗, and 01∗∗∗∗∗∗.

Two TCAMs can perform the range search
on these ranges, executing longest-prefix
matches concurrently among the 0-ELCPs
and the 1-ELCPs. Figure 3 illustrates this
process.

For example, let’s say query point q is 51.
The algorithm looks this point up in the two
TCAMs. The matching rows are i = 2 and j =
1. The algorithm then retrieves correspond-
ing endpoints s2 = 62 and t1 = 55 and com-
pares against q. Because the second
comparison is successful, jth range (34, 55) is
the correct matching range. If both compar-
isons had been unsuccessful, then the algo-
rithm would not output any range. The two
TCAM, static RAM lookups, and the two
comparisons can execute concurrently in
hardware. More precisely, hardware can per-
form disjoint range search in one memory
cycle using a two-stage pipeline.

Range intersection
We can reduce any range intersection prob-

lem (disjoint or nondisjoint set) to two point
intersection problems as follows.

S = {[s1, t1], [s2, t2], ..., [sn, tn]}, is the set of
ranges for the range intersection problem.
Given query range [x, y], first search for point
y in S. If there is a match, return that range as
an intersecting range.
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Figure 3. Range search using TCAMs.



Otherwise, we look for y in the following set
of ranges: S ′ = {[0, t1], [t1, t2], ..., [tn−1, tn], [tn,
W]}.

Say we find y to lie between ti and ti+1. Then
we compare x with ti. If x ≤ ti, we return [si, ti]
as an intersecting range. Otherwise, there is
no intersection.

For disjoint ranges, we can combine the two
lookups into one by looking for y in the fol-
lowing set of ranges: S″ = {[0, s1], [s1, t1], 
[t1, s2], ..., [sn, tn], [tn, W]}. As in the point inter-
section problem, we store the ELCPs for each
range in set S in two TCAM classes.

During an insertion of [s, t] between t1 and
si+1, it might seem as if we must delete LCPs for
[ti, si+1] and insert LCPs for [ti, s], [s, t], and [ti,
si+1]. However, the following lemma shows
that we don’t need to delete any LCPs and can
perform fewer TCAM insertions. (We omit
the lemma’s proof in this article.)

Lemma. If x ≤ y ≤ z then LCP(x, z) is a sub-
prefix of both LCP(x, y) and LCP(y, z) and
equals one of those.

P is a subprefix of Q if length(P) ≤
length(Q), and most-significant length(P) bits
are identical in P and Q. 

Figure 4 implements the algorithms for the
range intersection problem.

Sorting
We can sort n numbers by making n inser-

tions into an empty sorted list. Inserting into
a sorted list is equivalent to performing a range
search on the ranges that the list elements
define. These ranges are disjoint and cover the
entire line. If (a1, a2, a3, ...) are elements in
sorted order, then the corresponding ranges
are [0, a1), [a1, a2), ..., [an, W ). We maintain
a doubly linked list to enable easy insertion in
the middle of this list. The insertion algorithm
is very similar to the insert_point() routine
used in PIDR_OPT. This requires two inser-
tions into the TCAM and three additional
memory operations for insertion into the dou-
bly linked list. Using our algorithm, you can
perform insertions and deletions to a sorted
list in O(1) time. Thus, you can sort n num-
bers in O(n) time and perform priority queue
operations in O(1) time.

Eliminating the longest-prefix match requirement
Algorithms PIDR_OPT and RIDR_OPT

require longest-prefix matches in the TCAM.

One way to accomplish these matches is by
storing the prefixes in decreasing-length order,
which involves TCAM space management
overhead. You must then maintain this order
during insertions. This might require moving
certain TCAM entries during an insertion to
maintain this order. Researchers have devised
various techniques to minimize the moves dur-
ing an insertion.9 Clearly having a TCAM of
size nlog W completely eliminates all moves.
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// For each endpoint s or t, we maintain whether it is a
// start point or an endpoint of the input range and its
// corresponding input range.

RIDR_Search(x, y) {
[u, v] = PIDR_Search(y)
if u is a start point in an input range

return [u, v]
elseif (y == v)

return range corresponding to v
else { // u is an ending point

if (x ≤ u)
return range corresponding to u

else
return no intersection

}
}

Point_lookup (p) {
ELCP0 = Lookup p in class C0
If (ELCP0 exists) and (p ≥ ELCP0→q)

then return ELCP0→q
ELCP1 = Lookup p in class C1
If (ELCP1 exists) and (p ≤ ELCP1→q)

then return ELCP1→q
}

Insert_point(p) {
v = Point_lookup(p)
P = longest_common_prefix(p,v)
Insert P0 pointing to smaller of p and v
Insert P1 pointing to larger of p and v

}

insert (s, t) {
insert_point(s)
insert_point(t)

}

delete_point(p) {
P = longest ELCP matching P obtained by doing

2 lookups in C0 and C1
Delete P and its sibling from the TCAM
// sibling of a prefix is obtained by inverting the last bit
// of the prefix

}

delete(s, t) {
delete_point(s)
delete_point(t)

}

Figure 4. Algorithm RIDR_OPT.



We now describe a method to perform
longest-prefix match without maintaining
prefix order; it uses a double-width TCAM.
The scheme uses log(log W ) TCAM lookups
for the longest-prefix lookup.

We divide the TCAM into two logical
columns of width w = log W. For every prefix
P, we store P∗l−11∗w−l in the TCAM, where l
= length(P).

To look up key k, we perform a binary
search for the length of the longest prefix that
matches k by feeding log(log W ) different val-
ues into the second part of the TCAM lookup
key. The first part of the TCAM lookup key
is always set to k.

We search for prefixes of length greater than
w/2 by feeding 0w/21w/2 into the second part of
the TCAM lookup key. If we find a match,
we look for prefixes with lengths between
3w/4 and w by feeding 03w/41w/4. Otherwise,
we look for prefixes with lengths between w/4
and w/2 by feeding 0w/41w/40w/2, thus contin-
uing the binary search.

For the point intersection problem, if the
ranges are much smaller than W and scattered
apart, the LCPs will not likely be subprefixes
of each other. This characteristic gives us a
technique to prune the binary search space in
looking for the longest TCAM entry. Look up
key k in the TCAM by feeding 1w to the search
in the second part, and say we find prefix P of
length l. You can look for prefixes longer than
that by feeding 0l1w−l in the second part of the
TCAM lookup key. If there is no such longer
key, then we will learn that immediately. So
for such applications, the search would typi-
cally take two lookups.

Another practical solution for applications
that can afford log W TCAM operations for
lookup is to simply try all the key’s prefixes.
In fact, this solution does not even use the
TCAM’s ternary nature, and you can accom-
plish it using an exact lookup in a CAM. Store
prefix P as Pbw−l in a CAM, where l =
length(P), and b is the bit obtained by invert-
ing the last bit of P. This gives us an algorithm
with O(log W ) search time, O(1) insertion
time, and O(1) CAM space per range for dis-
joint range intersection and range search prob-
lems.

General-purpose algorithms
One method for solving the point intersec-

tion problem for possibly overlapping ranges
is to break every range into O(log W ) prefix-
es.4 This enables search in O(1) time and
insertions in O(log W ) time, and uses 
O(log W ) space per range. This method also
yields an algorithm of the same complexity
for the range intersection problem by using
the reduction described earlier.

We now present an algorithm for the general
point intersection problem; it uses O(1) time
for search and O(log W ) time for insertion,
and uses O(1) space per range. We obtained
these results by exploiting the fundamental
similarity between a Patricia tree and LCPs. A
Patricia tree is a binary tree where bits of a key
are used to walk down from the root, a left
child is taken on a 0 bit; and a right child, on
a 1 bit. For sorted set of points (a1, a2, a3, ...),
the set of LCPs of adjacent points actually rep-
resents the Patricia tree on these points. These
LCPs are in fact exactly all of the internal nodes
in the Patricia tree. Our algorithms demon-
strate simple methods of exploiting the Patri-
cia tree data structure (without explicitly
maintaining it) by storing LCPs of consecu-
tive points and performing longest-prefix
matches.

Figure 5 shows a Patricia tree formed by
endpoints s1, t1, s2, t2, ..., sn, tn, for a nondis-
joint point intersection problem. Each edge
of the Patricia tree corresponds to an ELCP.
It is a 0-ELCP if it is a left edge and a 1-ELCP
if it is a right edge. For every input range [s, t],
we draw a band from s to LCP(s, t) and back
to t. This band passes through some edges of
the tree. It could pass an edge either from the
left or the right sides. We say that the band’s
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Figure 5. Patricia tree on the endpoints.



portions from s to LCP(s, t) pass through their
edges on the right side. And the remaining
portion of the band passes through its edges
on the left side. For each edge, we count the
number of bands passing through its left side
(left count) and its right side (right count).

We also maintain another count, Tcount,
for each edge (u, v) where u is the parent of v.
If v is the right child of u, for Tcount we count
the number of bands that pass through node
u’s right side but not through (u, v). Similar-
ly, if v is the left child of u, for Tcount we count
the number of bands that pass through u’s left
side but not through (u, v).

Here, we make the following observation:
If query x lies in input range [s, t], then the
path from x to the root must touch band(s, t)
somewhere on the path. Considering the first
node where the path intersects the band, we
have two cases.

Case 1
The first point of intersection is not an inter-

nal node of the Patricia tree. This is the point
where the path from x to root first touches the
Patricia tree. If x hits band (s, t) on edge e from
the left side, then we must have counted band
(s, t) in the edge’s left count. We have a similar
result, if x hits edge e from the right side.

Case 2
The first point of intersection is an internal

node of the Patricia tree. If the path from x to
root hits band(s, t) along edge e, then we must
have counted band(s, t) in the Tcount for edge
e. This gives us the following algorithm for
finding whether the path from x to the root
hits a band.

Find the first edge, e, where the path from x
to the root touches the tree. If the count for x’s
side (left or right) of e is nonzero, then it has
touched a band. Otherwise, we simply check
if any edge from e to the root has a nonzero
Tcount. If so, there is an intersection; other-
wise, there is none. 

In terms of ELCPs, this method translates
into the following. Find the longest ELCP that
matches x. Check whether the count on x’s side
of ELCP is nonzero. If not, then check
whether any ELCP that is a prefix of x has a
nonzero Tcount. You can do this in one lookup
by maintaining all the ELCPs with nonzero
Tcounts in separate class C2. You must maintain

these counts during insertions and deletions.
To locate the prefixes during deletions, we

further subdivide this class into two classes:
one for prefixes ending in 0 and the other for
those ending in 1. Alternately, we can point to
these prefixes from their original copies in C0

or C1.
We provide a mechanism to compute prefix

P ’s parent using a TCAM by performing two
lookups. Let Q be the prefix obtained by drop-
ping P ’s last bit. Look up Q01 ... 1 and Q10
... 0 in class C0 and C1. Take the longer of the
two lookup results.

It might seem that for insertions, while look-
ing up all the ELCPs from s to LCP(s, t), you
must perform 2logW lookups. But we can eas-
ily reduce this to log W by storing the prefix
lengths looked up in the two TCAM classes.

For random points, the Patricia tree is well
balanced5 and so the number of LCPs on the
path would be O(log n). So you can perform
insertions in O(log n) time for random inputs.

Furthermore, for applications involving
short, mostly scattered ranges with few overlaps,
the LCPs would rarely be subprefixes of each
other. In such cases, the insertions and deletions
would take O(1) time because you only need to
search up to the height of LCP(s, t).

As for the range intersection problem, we
again use the reduction to the point intersec-
tion algorithm to obtain another algorithm
with the same complexity.

These algorithms depend on longest-prefix
matches in the TCAM. As before, we can elim-
inate this requirement by doubling the width
of TCAM entries and performing a binary
search for a longest-prefix lookup. Now the
search time would be 2log(log W ). For appli-
cations that can tolerate O(log W ) time for
searches and insertions, you can implement
these algorithms in a CAM by searching all the
prefixes for the longest-prefix match.

Figure 6 shows algorithm PI_OPT, which
we derived based on this approach.

We provide a set of TCAM-based algo-
rithms with varying time, space, and

implementation complexities for sorting and
searching. In particular, for the point and
range intersection problems for disjoint
ranges, we provide an algorithm that uses con-
stant time and space for all operations, assum-
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ing an engine for longest-prefix matching. For
the general case, we provide algorithms that
require O(1) time for search and O(log W )
time for insert; they use O(1) space. This
enables maintaining a sorted list or a priority
queue with O(1) time for insertions and dele-
tions. It would be interesting to find an algo-
rithm for the general case that performs all
operations in constant time and space. Also,
for nondisjoint ranges, our algorithm does not
report all the intersecting ranges but simply
responds in a Boolean fashion, indicating
whether or not there is an intersection. An

interesting open problem would be to
enhance this algorithm to report all the inter-
secting ranges. MICRO

References
1. D. Eppstein and S. Muthukrishnan, “Internet

Packet Filter Management and Rectangle
Geometry,” 12th ACM-SIAM Symp. Discrete
Algorithms, ACM Press, 2001, pp. 827-835.

2. A. Feldmann and S. Muthukrishnan, “Trade-
offs for Packet Classification,” Proc. IEEE
Infocom, IEEE Press, 2000, pp. 1193-1202.

3. P. Gupta and N. McKeown, “Algorithms for

52

HOT INTERCONNECTS 10

IEEE MICRO
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// ELCP→q : For 0-ELCPs store largest endpoint matching it
// : For 1-ELCPs store smallest endpoint matching it
// ELCP→count[side], side could be left or right
// stores left count and right count.
// ELCP→Tcount
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if (ELCP0 exists) and (p ≥ ELCP0→q)

then return ELCP0
ELCP1 = Lookup p in class C1
if (ELCP1 exists) and (p ≤ ELCP1→q)

then return ELCP1
}

Search (x) {
ELCP = PI_point_lookup(x)
if (x ≤ ELCP→q) and (ELCP→count[left] > 0) then

return TRUE
elseif (x ≥ ELCP→q) and (ELCP→count[right] > 0)

return TRUE
else {

Lookup x in class C3
if (hit) return TRUE
else return FALSE

}
}

// side is 0 if it is left side, else 1
subroutine_insert (r, len, side) {

v = Point_lookup(r)
P = longest_common_prefix(r, v)
Insert P0, P1 in the TCAM class C0 and C1 resp
if newly inserted then initialize all their counts to 0
P0→ q = min(v,r)
P1→ q = max(v,r)
P = r
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if (b == last bit of P)

P→ q = r
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}
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if (P→ q == r)

P→ q = d;
if (length(P)-1 > len) and (last bit of P! = side) {

P′ = Lookup sibling of P
decrement P′→Tcount
if (P′→Tcount == 0) then

delete P′ from class C2
}

}
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subroutine_delete (s, length(LCP), right);
subroutine_delete (t, length(LCP), left);

}

if (length(P)-1 > len) and (last bit of P! = side) {
P′ = P with last bit inverted
Lookup P′
If it exists then

increment its Tcount
if (Tcount == 1)

insert P′ in C2
}

}
}

insert (s, t) {
P = longest_common_prefix (s,t);
subroutine_insert (s, length(P), right);
subroutine_insert (t, length(P), left);

}
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