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Abstract 
This paper proposes a new technology for intel- 
ligent machines, based on the concept of pro- 
grammable hardware. To build an intelligent 
system, the designer has to adapt it t o  the 
problem. First we show that programmable 
hardware is an intermediate step for building 
configurations, in order to  choose the best ar- 
chitecture. In this case, the tasks are per- 
formed in a time period that respects human 
cognitive capacities. Next is detailed a multi- 
level model composed of the cognitive, software 
and hardware levels. An experimental platform 
has been built based on programmable hard- 
ware, and used in a “Grand Challenge” prob- 
lem: knowledge discovery in genetic sequence 
databases, to  compare the relative efficiencies of 
programmable hardware and classical Von Neu- 
mann based architecture. Programmable hard- 
ware has shown to have a significantly faster re- 
sponse time, which is essential for modern day 
intelligent machine user interaction. 

1 

1 Introduction 
The international communication networks im- 
pose performant machines to  manage the com- 
munication flows that it generates. Needs of the 
users are highly heterogeneous and each kind of 
usage forces constraints on the response delays. 
An important point therefore is to satisfy the 

the problem to deal with. At the opposite, dedi- 
cated machines are optimized for a special usage, 
in a specific context. Thanks to  this optimiza- 
tion, they have great performances, but they can 
only be applied to  a small range of problems. 

Nowadays, the increasing amount of multi- 
media data imposes a great speed up of the 
applications, in order t o  allow knowledge ac- 
quisition and keep interaction with the user. 
Newell [16] found that  low level knowledge ac- 
quisition cognitive tasks were performed in a 
time bracket between 2 and 99 seconds, the aver- 
age time being about 10 seconds. According to  
Newell, all the tasks may be organized in several 
levels (Fig. 1). 

I O u R c O ~ m o N  

user by assuring a response time of queries. Gen- 
eralist machines may be applied to solve prob- 
lems from large different areas, since they are 
programmable as wanted. Nevertheless, this is 
obtained with a loss of computing power, since 
the instruction set is obviously not adapted to 

Figure 1: The user analyses and controls activ- 
ities according to  the results produced by the 
system. This mechanism is generally called de- 
liberation mechanism. The mentioned levels 
follow Newell’s architecture. 
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At first, to respect this interaction time, a 
speed up could be proceeded by software, but 
this is not enough, since the unceasing increase 
of the flow of data can not be contained by 
a purely software solution. Therefore, another 
kind of speed up should be proposed, in order 
to deal with a real size problem as large as the 
genetic domain. To get a good speed up, while 
having an adequation of the machine to the ap- 
plication and the environment, a solution con- 
sists in adapting the architecture of the machine 
contextually to  the problem [ l l ] .  Conceptually, 
the speed up is provided by a dynamically recon- 
figurable dedicated machine, taking into account 
the environment. 

A new kind of hardware] such as the Config- 
urable Array Logic [9], or Programmable Active 
Memories [3], uses programs to  upgrade hard- 
ware efficiency to  cope with certain tasks. By 
nicely programming this hardware, the machine 
is adapted to the problem. This flexibility re- 
sults from the possibility to  adapt the hardware 
to any kind of application with a development 
time similar to  that of software design. Execu- 
tion time should be compared to  that of special- 
purpose hardware. However, the hardware cur- 
rently used does not yet allow a dynamic recon- 
figuration of the machine during the execution 
time. This should be possible with a future gen- 
eration of hardware, particularly with the Xilinx 
6200 family. The objective of this study is to 
demonstrate that programmable hardware can 
give an intelligent machine the capacity to  inter- 
act with humans, to succeed in a cognitive task. 
We thus implement into an experimental plat- 
form a “Grand Challenge Problem” [5], knowl- 
edge discovery in genetic sequence databases 
[15, 14, 171. The “Challenge” is to  both scan the 
entire Human genome database (800 MBytes) 
and control the result in real time, to enable a 
profitable interaction between the user biologist 
and our system. We call scanning a genomic 
database, the search of a pattern in a sequen- 
tial list of characters in the four letter alphabet 
{A,C,G,T} which are the four nucleotides found 
in the genome. The entire responsibility of the 
results relevance is given to the human agent 
(the biologist), who may initiate new queries or 
refine previous ones, the so-called control of the 
results. 

This paper is organized as follows: an in- 
troductive section gives an overview of pro- 
grammable hardware. Then we present an ar- 
chitecture for an efficient scanning of a genomic 
database according to user rules (patterns). Be- 
fore conclusion, we experiment and compare our 
programmable hardware platform, made of a 
workstation and a programmable prototype re- 
alized by a Research Center of Digital Equip- 

ment Corporation, with the workstation itself, 
and show that the latter is unable to  scan the 
entire database in a human-scale time period. 

2 Programmable hardware : 
an overview 

The first requirement of artificial cognitive sys- 
tems is that the increase in performance neces- 
sary for a complex set of actions be controlled 
from within the system. As in many other do- 
mains we have to  deal with the trade-off between 
generality and performance, in other words pro- 
grammable computers or special purpose com- 
puters. We propose programmable hardware to 
bridge the gap between flexibility and comput- 
ing power. 

2.1 Programmable hardware 

The programmable hardware concept, as well 
as its implementation with Field Programmable 
Gate Arrays (FPGAs), was introduced by differ- 
ent teams at the end of the 80’s. Vuillemin, Lo- 
presti and Kean described various systems based 
on this concept [3,8,9],  and indeed, this concept 
has been first proposed in the literature since 
the 70’s. One of the first t o  have expressed it 
was Schaffner [18]. However, it was only with 
the arrival of the SRAM based FPGA in 1985 
by Xilinx that it became possible to implement 
this concept. 

This flexibility results from the possibility 
to adapt the hardware to  any kind of applica- 
tion with a development time similar to  that 
of software design. Execution time should be 
compared to  that of special-purpose hardware 
thanks to  the realization, through a download- 
able bitstream, of any synchronous logic circuits 
directly at runtime [6, 1, 21. Furthermore, by in- 
tegrating some data only known at runtime into 
the design process, we can increase the behav- 
ioral specification of the application. This opti- 
mization then increases the overall performance 
of the system. The aim of dynamic reconfigura- 
tion is t o  bridge the performance gap between 
flexible FPGA and full custom ASIC (Applica- 
tion Specific Integrated Circuit). In addition, 
this technique enables the use of intrinsic bit 
level parallelism without the overhead of a com- 
munication network, as with most general pur- 
pose parallel machines. Ganglion, for example, a 
programmable hardware connectionist classifier 
realized by C. Cox and W. Blanz [6] that opened 
the way to real utilization of the concept of re- 
configuration, achieved much of the performance 
and density benefits from full-custom circuits. 
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2.2 FPGA 
A FPGA is a grid of small memory 16x1 bits in- 
terconnected by a network across the whole grid, 
as shown in Figure 2. 
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Figure 2: A PAM implementation: the Field 
Programmable Gate Array 

These small memories are lookup tables that 
can implement any logic functions of four vari- 
ables. In the FPGA that we used, the lookup 
tables are grouped in pairs with two additional 
1 bit registers and form a CLB (Configurable 
Logic Block), the basic element of the Xilinx 
FPGA. The network is fully configurable, each 
interconnection being made with pass transis- 
tors controlled by the state of a one bit static 
memory. The bitmap (bitstream file in FPGA 
terminology) formed by all these one bit memo- 
ries plus the CLBs look-up table is downloaded 
into the FPGA before any execution. Changing 
the design of an FPGA is thus done by down- 
loading a new bitstream file that  configures the 
interconnections between binary functions (CLB 
look-up table). The reader may refer to [4] for a 
complete description of FPGA. 

The main advantages of Programmable 
Hardware for an AI machine are as follows: 

1. 

2 .  

3. 

2.3 

Fine grained parallelism respects the time 
scales between levels in the system. 

Reconfiguration adds flexibility and sup- 
presses potential overheads induced by the 
use of parallelism. 

Reconfiguration of programmable hard- 
ware is generally simpler than to repro- 
gramme processors network. 

Measures of computing power 
A common unit for computing power is needed 
to compare the computation realized with and 
without programmable hardware. For that pur- 
pose we use the Bop and Bops previously defined 
by Vuillemin in [20]. 

One Bop circuit is any gate with at most 
three inputs and one bit of internal state, such 
as a full adder. From this definition we can de- 
fine a Bops as one binary operation per second. 
A Bops is delivered by any Bop circuit operating 
at 1Hz. Obviously GBops, namely lo9 Bops, is 
a more useful measure. 

Let us now define in Bop the complexity of 
some arithmetic and logic operations : 

+ One n + n H n + 1 bit addition each 
nanosecond is worth n GBops. Subtrac- 
tion, integer comparison and logical oper- 
ations are bit-wise equivalent to addition. 

x One nxm I--) n+m bits multiplication each 
nanosecond is worth nm GBops. Division, 
integer shifts and transitive bit permuta- 
tions are bit-wise equivalent to multiplica- 
tion; consequently, so is a n m Look- 
up Table, LUT, or Random Acess Memory, 
RAM, access. 

For example, a 100MHq 32 bit micropro- 
cessor that can execute all arithmetic op- 
erations in one cycle can deliver a vir- 
tual computing power of lo8 x 32 x 32 x 
100 GBops. But if the real data are coded 
in 4 bits the computing power deIivered 
drops to 1.6 GBops. 

In this section, we have presented the pro- 
grammable Hardware to bridge the gap between 
flexibility and computing power. This is a nice 
way to get several configurations of an architec- 
ture. Now, let us take advantage of this archi- 
tecture variability in a multi-level architecture. 

3 A three level architecture 
We present in this section an architecture to eE- 
ciently manage the information streams and the 
different tasks at several levels of abstraction, 
thanks to programmable hardware. This archi- 
tecture is applied to genomic systems. 

3.1 Principles of a multi-level ar- 
chitecture 

In a multi-level architecture, a level : 

* should be stable, autonomous and reg- 
ular. 

has its own language. 

* has specific complexity and timing con- 
str aints . 

has limited computing resources. 
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The architecture we propose is composed of the function formed with a Majority And (MajAnd). 
Cognitive, Software, and Hardware Levels. They This function returns ONE if the number of its 
are roughly corresponding to the “Performance”, inputs at ONE is over a given threshold. The 
“Temporary storage” , and “Primitive actions” user chooses some regularities to  build queries, 
levels in the architecture of the mind [16, page that are computed on the DECPeRLe-1 Board. 
811. They will be detailed in the following. Each Let us now have a look at the levels of the ar- 
task is associated with a level in the three-level chitecture. 
architecture, according to its computing time, 
and communicates with the other levels through 
information streams. When tasks no longer re- 
spect the constraints imposed by a level, they are 
delegated and decomposed to  a lower level un- 

with time and complexity orders of magnitude. 
A level and an information stream are com- 

patible when the returned information volume 
is included in the level working values, and re- 

Categorization Learning 

til they reach a point where they are compatible LEGAL regularities 

spects the time and complexity constraints of 
the level. If the information volume is compati- 
ble with the constraints of the level, then the re- 
sults are transmitted to  the cognitive level, and 
are analyzed by the user. If the results are not 

Sequence study on DecPerle-1 board 

I v . - - - - - - - -  j relevant, and in order to  provide more useful in- 
formation to  the user, a new design is generated 
for the programmable hardware. This design is 
built with the main core of the “faulty” design 
with the user query modification. As soon as the 
bitstream is generated the process of acquisition 
is started again, but now the new information 
extracted concerns the method behavior. 

Switching from a task acting on user data 
to  a meta task acting on the behavior of the 
previous task is done at the cost of a reconfig- 
uration. We should like to  point out that the 
programmable hardware can perform efficiently 
these two tasks. 

A previously computed design is loaded onto 
the board to  produce new results compatible 
with the software level. Since library design 
loading only requires one second, and since pat- 
tern detectors are characterized by their entry 
number and the associated threshold, it is very 
rapidly decided whether a library design is rele- 
vant or not. 

3.2 Illustration in genetic domain 
Let us now illustrate on a pattern matching sys- 
tem the principles of production of an architec- 
ture. The global schema of the biological appli- 
cation is represented in Fig. 3 

A set of examples and counter examples, (ie 
biological sequences chosen by the biologist), is 
learned by the LEGAL system [15,14], as shown 
in Figure 3.  For each input set, the learning al- 
gorithm produces a set of regularities that char- 
acterizes it and its associated concept. A regu- 
larity is composed of several patterns associated 
with a decision function, which is a non-linear 

Figure 3: Overview of the genome scanning 
system: Machine learning methods are classi- 
fiers. Their results are regularities categories ex- 
pressed by sets of Majority ANDs. 

3.3 Cognitive Level 
This level controls the cognitive tasks of the sys- 
tem. It manages the control of learning, by con- 
trol of all sets of examples, counter examples, 
and rules. It also manages the control of decision 
thresholds used by the learning process. The 
acquisition of knowledge level is carried out ac- 
cording to a “propose and revise” process, where 
it is possible to dynamically modify a rule by 
modifying the decision threshold associated with 
it, thus limiting the number of sequences cor- 
responding to the rules. Following this, it is 
also possible to  modify the validation rate of the 
rules. At this point, the operations are restricted 
to a’propositional calculation extension, so that 
statements can be evaluated in threshold con- 
junctive normal form. The objective is to obtain 
a volume of results compatible with cognitive ac- 
tivity and to engage a deliberation process with 
the user. 

3.4 Software Level 
This level manages the production of learning 
rules, which enable the demand for information 
to be limited with regard to  the system con- 
troller. It also produces the decision thresholds 
used at the hardware level, as well as request 
wiring. During the application, the user chooses, 
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at cognitive level, queries from a set of candidate 
queries, furnished by the learning system. All 
the requests should be formulated in a standard 
way, namely conjunctive normal form, so that 
choosing a previously computed design is quite 
easy. The queries are applied on patterns. The 
patterns are formed by a sub-alphabet vector, 
(ie an alphabet reduced to  authorized letters at 
the position in the pattern) [12, 131. For exam- 
ple [A,G]. .[A,T]G.[A,C][C,T,G] is a pattern (. 
is a short cut for the whole nucleotides alpha- 
bet; [A,T,G,C]) that can match with sequences 
such as ATTTGAAC, GATAGcCT and so on. 
Thanks to  a smart implementation, the com- 
plexity of a patterns of length 8 equal 8 Bop. 
The different kinds of queries are : 

a 

0 

0 

3.5 

Motif detection : The query may be the 
detection of a motif. For example, the 
previously introduced pattern will be ex- 
pressed in conjunctive normal form as fol- 
lows : (20 = A V 50 = G) A (21 V 7x1) A 
(22 V 722) A ( 2 3  = A V  5 3  = T )  A ( 2 4  = 
G)r\(25V’Z5)/\(26 = A V 2 6  = c ) A ( ~ 7  = 
C V X ~ = T V X ~  = G )  

Looking for biological properties in pat- 
terns by using a rule, which is a set of pat- 
terns associated with a threshold. 

Detecting functional properties as primate 
splice junction sites by using a set of rules 
and a threshold [15] 

Hardware Level 

3.5.1 DECPeRLe-1 

A DEC workstation running at 40MHz with a 
Reconfigurable board constitutes the experimen- 
tal platform. The board contains 23 Xilinx FP- 
GAS and 4 MBytes of SRAM. 16 FPGAs are 
connected in a 2D array with local interconnec- 
tion and memory buses. 7360 (23 x 320: 320 
CLBs per FPGA), binary functions, equivalent 
to  1 bit arithmetic and logic unit (1 Bop), can 
be evaluated, at each cycle, in the array. Thus 
at 40MHz the virtual computing power of the 
board is x 290 GBops. The maximum band- 
width between this array and the memory is 320 
MBytes/s with an access time from SRAM to 
FPGAs of 50 ns. The hardware is connected to 
a DecStation 5000/240 by a bus Turbochannel 
at 100 MBytes/s peak and around 20 MBytes/s 
sustained with the disk. 

On this UNIX workstation the design is de- 
veloped in C++ and translated through Xilinx 
tools into a bitstream configuration ready to be 
loaded onto the FPGAs. The bitstream config- 
uration can be considered as an unique nanoin- 

struction of 1.4 Megabits width that loads itself 
in less than 50 ms onto the board [19]. 

3.5.2 Patterns and Majority And 

A Majority And (MajAnd) is a parallel counter 
with a threshold output. A (n,m) Parallel 
Counter (PCs) is a n-inputs circuit that pro- 
duces a m = [log2(n)l bit binary count of the 
number of its inputs that are ONES. A (n,m) P C  
would have an n Bop complexity if we used the 
Dadda decomposition [7]. The threshold func- 
tion that transforms a (n,m) PC in MajAnd with 
n inputs is implemented with a m I+ 1 look-up 
table. The main advantage of this implemen- 
tation is the possibility to  change the threshold 
by writing straight into the bitstream configura- 
tion of the FPGAs, and avoid a complete and 
slow redesign of the whole FPGA. The degree 
of complexity of a MajAnd (n) = n + [log2(n)l 
Bop. 

3.5.3 Runtime dynamic reprogramma- 
tion of rules and Majority thresh- 
old 

Two kinds of reprogrammation are done here, 
the use of which depends on the degree of mod- 
ification requiered by the user control. If the 
biologist seems to  be unsatisfied by his previ- 
ous results and needs to  try totally new rules 
(the size and the number of rules may change), 
then the hardware part needs a full reconfigura- 
tion. In this case, the system takes in charge the 
rules and the Majority And threshold given by 
the biologist, and generates automatically the 
design from the Xilinx Netlist File t o  the bit- 
stream. In a second case, the user may just 
want to refine his request (rules + threshold), 
then, for few modifications, he should not have 
to  wait a long time for the hardware level t o  be 
reprogrammed. As a matter of fact, few mod- 
ifications in a request should be solved in few 
milliseconds. Thus, we directly modify the bit- 
stream as recommended in [11][6]. This kind of 
reconfiguration increases both the density and 
the speed of the design. Once the biologist has 
given his rules and threshold, the system changes 
the existing bitstream and downloads it in the 
FPGA. These two kinds of hardware reprogram- 
mation are runnable by naive users since the sys- 
tem takes in charge the entire reprogrammation 
from a set of user-defined rules. 

In this section, we have presented a three- 
level architecture, that deals with the cognitive, 
software and hardware tasks. Let us now have 
a look at the experimentation on the biological 
application. 
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4 Real World Experimenta- 
tion 

Let us identify now the information streams and 
evaluate them in a software and hardware im- 
plementation. 

4.1 Informat ion flows 
The streams in our biological application are : 

0 Cognitive level/Software level stream : 
The stream between cognitive level and 
software level provides a query formula- 
tion for the software level. In our appli- 
cation, the user delegates the building of 
a query to  a learning machine. The query 
is composed of a set of rules and a deci- 
sion function using these rules. In return, 
the stream from software level to  cogni- 
tive level presents results to the user, in a 
lapse of time compatible with his mental 
process. 

0 Cognitive level/Hardware level stream : 
This stream is an information stream com- 
posed on the one hand of cognitive and 
software levels, and on the other of soft- 
ware and hardware levels. It is used for 
rule selection by the user at the Cognitive 
level. These rules are then managed by 
the software level, to be executed or to  be 
translated into a sequence of instructions 
or a bitstream for the hardware level. 

0 Hardware/Software stream : The software 
to hardware stream is the characterization 
of information intended for the hardware 
task level : data from query wiring and de- 
cision threshold fixing. Inversely, the hard- 
ware to software stream returns results 
from the decision mechanism, enabling the 
learning system to continue with its task. 

4.2 Formal evaluation using BOPS 
4.2.1 Software implementation 

At the “Software level”, pattern detection is per- 
formed as follows : 

per cycle (CPI = l ) ,  with perfect cache, pat- 
tern detection would take 12 cycles. The Ma- 
jAnd calculation does not add any cycles since 
it is integrated into pattern detection, and in any 
case the result of the match needs to  be stored. 
Therefore the number of nucleotides per second, 
N ,  scanned with p patterns of length up to 8 is: 

1 N =  
12 x p x T p p  

Where r p p  is the cycle time of the micropro- 
cessor used, (we assume a microprocessor with a 
CPI equal to  one). 

The evaluation in Bop of this code gives us : 

add, compare, or, and, xor = w Bop for 

0 load from a p entry table = 10g2(p) x w 

w bits by word processor. 

Bop. 

0 shift i position = i x w. 

0 Total : 12 instructions whose 2 shift and 1 
load 

w Bop. 
9w+(w+2w)+log2(p) w = (12+10g2(p))x 

For instance with the DECstation 5000/240 
with a R3000 microprocessor: rpp  = 25 lO-’s, 
w = 32, and 32 patterns we can compute: 
N M 105nucleotides per second The computing 
power used for this task is : 

x 32 x (12 +log#‘)) M 1.8GBops 
12 x r p p  

4.2.2 Hardware implementation 

Pattern detectors and MajAnds are imple- 
mented spatially rather than temporally since 
all operations can be pipelined so that they al- 
ways have a combined time equal to  one cycle, at 
the expense of several latency cycles. An eight 
nucleotide detector takes 4 CLBs, a CLB being 
the base unit of programmable circuits, and a n 
entry MajAnd always takes less than n CLBs. 
Hence the scanning time formula : 

p = 0 ;  
f o r  (; p < nb-of-patterns; pi+)  { 

match = pat terns  [i] sequence-window; 

Where TFPGA is the cycle time of the pro- 
grammable board and ncLB is the number of 
CLBs available in a circuit or a multi-circuit 

match = match 1 ((match >> 1) & 
match = match I ((match >> 2) & mask2) 
MajAnd += match == mask3; 3 

card. If the number of CLBs required to im- 
plement the detectors and the MajAnd is greater 
than the total number of available CLBs, the de- 
sign needs to be divided into two and therefore 

A connection counts as one operation, but has requires two scanning of the database. In our 
the value of zero cycles. Given the hypothe- case requests issued by the LEGAL learning pro- 
sis that the hardware executes one instruction gram always have less than 800 patterns and 50 
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Maj Ands that is the implementation limit into 
the DECPeRLe-1 board. The calculation time 
in this case is : T F p G A  = N x T F P G A .  

The computing power required in Bops is 
given by : 5 x p x N x T F P G A  

5 Experimental timing 

5.1 Cognitive Level/Software 
Level stream timing 

This stream consists in compiling the software 
unit, which takes less than 1 second, and in send- 
ing the results to  the cognitive level. The step 
is almost immediate, but still depends on the 
method used to present results. 

5.2 Cognitive Level/Hardware 

Once the user has queried the system, the 
queries must be wired onto the hardware unit. 
This stream is totally dependent on wiring and 
routing tool performance. The system can eas- 
ily wire 60 regularities per FPGA XC3090 with 
a 8 letter width pattern size. This step requires 
around 100 seconds per FPGA for wiring, plac- 
ing and downloading the queries onto the hard- 
ware unit : 

Level stream timing 

0 Set of rules translation : 1 second 

0 Routage (custom design only) : 10 seconds 

0 Bitstream modification & writing of the 
LUT : 1 second 

0 Loading : 10-I seconds 

This genetic sequences study (Fig. 4) com- 
pares execution on a Von Neumann machine and 
on our experimental platform. The difference 
between the standard and the custom reconfig- 
uration is in the time needed to  reconfigure in 
part from a generic design (standard option) or 
the whole from scratch (custom option). In this 
case the generation of the design takes around 
100 seconds during which time data cannot be 
treated in the DECPeRLe-1 board. 

As a result, execution on the Von Neumann 
machine is more performant during this time 
period, the two curves intersecting at lo7  nu- 
cleotides. Against this, the DECPeRLe-1 card, 
which can treat 40 million nucleotides per sec- 
ond, takes less than 90 seconds to  treat all the 
human genome, which would not be possible 
with a purely software application. The differ- 
ence in execution time is clearly shown in our 
model by the levels. The first 100 seconds corre- 
spond to a treatment at the Software Level, after 

which the order of magnitude is no longer re- 
spected and the Hardware Level assisted by the 
programmable hardware takes over. The speed 
at this level is several orders of magnitude faster, 
with the result that execution speed is greatly in- 
creased. Systems which have both software and 
hardware thus commence execution at the soft- 
ware level, and then progress to  the hardware 
level. The human cognitive mechanisms are re- 
spected, because the response time is less than 
100 seconds in the general case. A purely soft- 
ware execution takes more than 10000 seconds, 
which does not allow user cognitive activity. In 
addition to this, execution time is number pat- 
tern dependent, which is not the case when us- 
ing our system (under 800 patterns and 50 Ma- 
j And). 

IO' 

106 

lo5 

Figure 4: Hardware and software genetic se- 
quence study comparison : The %tandard" 
curve shows the results for a library-design, and 
the "custom" is obtained with a computed de- 
sign. 

6 Conclusion 
Experiments using programmable hardware 
have demonstrated their ability t o  respect user 
interactive time scales when dealing with a data 
query situation such as knowledge discovery 
in genetic sequence databases. Programmable . 
hardware has also shown itself to  be flexible, 
since it can be applied to  the control of a task 
during execution by the addition of a piece of 
hardware. This control possibility increases the 
overall cognitive capacity of the system [lo], and 
in our view is the key to the stability and au- 
tonomy of the different levels in the architec- 
ture. To become intelligent systems, the ma- 
chine should be adapted to  the problem. This 
adaptation may be data-dependent. In this case, 
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programmable hardware proposes interesting so- 
lutions. But in a global frame, the reconfigurable 
architectures are an intermediate step for achiev- 
ing the best architecture. 

The next step for reconfiguration is for learn- 
ing algorithms to  be directly implemented into 
the hardware, using dynamically reconfigurable 
FPGAs. This will open the way for improved 
skill acquisition, and hence significantly con- 
tribute to  the progress of Intelligent Machines. 

References 
[l] P. M. Athanas and H. F. Silverman. Pro- 

cessor reconfiguration through instruction- 
set metamorphosis. Computer, 26(3):11-18, 
March 1993. 

[2] P. Bertin, D. Roncin, and J. Vuillemin. Pro- 
grammable active memories: a performance 
assessment. In G. Borriello and C. Ebel- 
ing, editors, Research on Integrated Sys- 
tems: Proceedings of the 1993 Symposium, 
pages 88-102, 1993. 

[3] Patrice Bertin, Didier Roncin, and Jean 
Vuillemin. Introduction to  programmable 
active memories. In Systolic Array Pro- 
cessors, pages 300-309. J. McCanny et al, 
1989. 

[4] Stephen D. Brown, Robert J. kancis, and 
Jonathan Rose Zvonko G Vranesic. Field- 
Programmable Gate Arrays. Kluwer Aca- 
demic Publishers, 1992. 

[5] Comittee on Physical, Mathematical, and 
Engineering Sciences. Grand Challenges: 
High-performance computing and commu- 
nications. National Science Fondation, 
Washington D.C., 1991. 

[6] C. E. Cox and W. E. Blanz. GAN- 
GLION - a fast field-programmable gate ar- 
ray implementation of a connectionist clas- 
sifier. IEEE Journal of Solid-state Circuits, 
27(3):288-299, March 1992. 

[7] Luigi Dadda. Some schemes for parallel 
multipliers. Alta Frequenza, 19:349-356, 
1965. 

181 M. Gokhale, W. Holmes, A. Kopser, S. Lu- 
cas, R. Minnich, D. Sweely, and D. Lopresti. 
Building and using a highly parallel pro- 
grammable logic array. IEEE Computer, 
24(1):81-89, January 1991. 

[9] J. P. Gray and T. A. Kean. Configurable 
hardware: A new paradigm for compu- 
tation. In Decennial CalTech Conference 

on VLSI, pages 277-293, Pasadena, CA, 
March 1989. 

[lo] Barbara Hayes-Roth. Intelligent con- 
trol. Artificial Intelligence, 59(1-2):213- 
220, February 1993. 

[ll] E. Lemoine and D. Merceron. Run time 
reconfiguration of FPG A €or scanning ge- 
nomic databases. In D. A. Buell and K. L. 
Pocek, editors, Proceedings of IEEE Work- 
shop on FPGAs for Custom Computing 
Machines, pages 90-98, Napa, CA, April 
1995. 

[12] Eric Lemoine. Reconfigurable hardware for 
molecular biology computing systems. In 
Procc. of Int. Conf. on Application-Specific 
Array Processors, pages 184-187, 1993. 

[13] Eric Lemoine, Joel Quinqueton, and Jean 
Sallantin. High speed pattern matching in 
genetic data base with reconfigurable hard- 
ware. In Procc. of the 2nd Int. Conf. on 
Intelligent Systems for Molecular Biology, 
pages 269-276. AAAI, 1994. 

[14] Engelbert Mephu Nguifo. Galois lat- 
tice: A framework for concept learning- 
design, evaluation and refinement. In Kout- 
sougeras & al, editor, Proc. of 6th Intl. con- 
ference on Tools for Artificial Intelligence. 
IEEE, November 1994. 

[15] Engelbert Mephu Nguifo and Jean Sal- 
lantin. Prediction of primate splice junction 
gene sequences with a cooperative knowl- 
edge acquisition system. In Procc. of the 
First Int. Conf. on Intelligent Systems for 
Molecular Biology, pages 292-300. AAAI, 
1993. 

[16] Allen Newell. 
tion. Harvard University Press, 1990. 

[17] H. Ripoche, E. Mephu Nguifo, and J. Sal- 
lantin. Indexing protein sequences with mi- 
nos. In Proc of the Genome Informatic 
Workshop of Japan, pages 49-58, 1994. 

[18] M. Schaffner. Processing by data and pro- 
gram blocks. IEEE Transactions on Com- 
puters, 27(11):1015-1028, November 1978. 

Unified Theories of Cogni- 

[19] Herv6 Touati. PerlelDC: a C++ li- 
brary for the simulation and generation of 
DECPeRLe-1 designs. Technical Report 
TN4, Digital Paris Research Laboratory, 
1992. 

[20] Jean E. Vuillemin. On computing 
Lecture Notes on Computer Sci- power. 

ences, 782:69-86, December 1993. 

632 


