
1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 May 1997, Adelaide, Ausnalia. Editor, L.C. Jain

High Speed Intelligent Machine through Programmable
Hardware : Application to Genomic Systems

Eric Lemoine * Laurent Maillet-Contoz t David Merceron *t
el@adb.fr maillet -contoz@lirmm.fr merceron@lirmm.fr

Jean Sallantint
sallantin@lirmm.fr

Abstract
This paper proposes a new technology for intel-
ligent machines, based on the concept of pro-
grammable hardware. To build an intelligent
system, the designer has to adapt it t o the
problem. First we show that programmable
hardware is an intermediate step for building
configurations, in order to choose the best ar-
chitecture. In this case, the tasks are per-
formed in a time period that respects human
cognitive capacities. Next is detailed a multi-
level model composed of the cognitive, software
and hardware levels. An experimental platform
has been built based on programmable hard-
ware, and used in a “Grand Challenge” prob-
lem: knowledge discovery in genetic sequence
databases, to compare the relative efficiencies of
programmable hardware and classical Von Neu-
mann based architecture. Programmable hard-
ware has shown to have a significantly faster re-
sponse time, which is essential for modern day
intelligent machine user interaction.

1

1 Introduction
The international communication networks im-
pose performant machines to manage the com-
munication flows that it generates. Needs of the
users are highly heterogeneous and each kind of
usage forces constraints on the response delays.
An important point therefore is to satisfy the

the problem to deal with. At the opposite, dedi-
cated machines are optimized for a special usage,
in a specific context. Thanks to this optimiza-
tion, they have great performances, but they can
only be applied to a small range of problems.

Nowadays, the increasing amount of multi-
media data imposes a great speed up of the
applications, in order t o allow knowledge ac-
quisition and keep interaction with the user.
Newell [16] found that low level knowledge ac-
quisition cognitive tasks were performed in a
time bracket between 2 and 99 seconds, the aver-
age time being about 10 seconds. According to
Newell, all the tasks may be organized in several
levels (Fig. 1).

I O u R c O ~ m o N

user by assuring a response time of queries. Gen-
eralist machines may be applied to solve prob-
lems from large different areas, since they are
programmable as wanted. Nevertheless, this is
obtained with a loss of computing power, since
the instruction set is obviously not adapted to

Figure 1: The user analyses and controls activ-
ities according to the results produced by the
system. This mechanism is generally called de-
liberation mechanism. The mentioned levels
follow Newell’s architecture.

*Advanced DataBase (ADB), 2 rue Niepce, 60200 Compiegne - FRANCE
ILIRMM, UMR 5506 Universite Montpellier I1 - CNRS 161, Rue Ada 34392 Montpellier Cedex 5 - FRANCE

0-7803-3755-7/97/$5.00 01997 IEEE

625

mailto:el@adb.fr
mailto:contoz@lirmm.fr
mailto:merceron@lirmm.fr
mailto:sallantin@lirmm.fr

1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 May 1997, Adelaide, Australia. Editor, L.C. Jain

At first, to respect this interaction time, a
speed up could be proceeded by software, but
this is not enough, since the unceasing increase
of the flow of data can not be contained by
a purely software solution. Therefore, another
kind of speed up should be proposed, in order
to deal with a real size problem as large as the
genetic domain. To get a good speed up, while
having an adequation of the machine to the ap-
plication and the environment, a solution con-
sists in adapting the architecture of the machine
contextually to the problem [l l] . Conceptually,
the speed up is provided by a dynamically recon-
figurable dedicated machine, taking into account
the environment.

A new kind of hardware] such as the Config-
urable Array Logic [9], or Programmable Active
Memories [3], uses programs to upgrade hard-
ware efficiency to cope with certain tasks. By
nicely programming this hardware, the machine
is adapted to the problem. This flexibility re-
sults from the possibility to adapt the hardware
to any kind of application with a development
time similar to that of software design. Execu-
tion time should be compared to that of special-
purpose hardware. However, the hardware cur-
rently used does not yet allow a dynamic recon-
figuration of the machine during the execution
time. This should be possible with a future gen-
eration of hardware, particularly with the Xilinx
6200 family. The objective of this study is to
demonstrate that programmable hardware can
give an intelligent machine the capacity to inter-
act with humans, to succeed in a cognitive task.
We thus implement into an experimental plat-
form a “Grand Challenge Problem” [5], knowl-
edge discovery in genetic sequence databases
[15, 14, 171. The “Challenge” is to both scan the
entire Human genome database (800 MBytes)
and control the result in real time, to enable a
profitable interaction between the user biologist
and our system. We call scanning a genomic
database, the search of a pattern in a sequen-
tial list of characters in the four letter alphabet
{A,C,G,T} which are the four nucleotides found
in the genome. The entire responsibility of the
results relevance is given to the human agent
(the biologist), who may initiate new queries or
refine previous ones, the so-called control of the
results.

This paper is organized as follows: an in-
troductive section gives an overview of pro-
grammable hardware. Then we present an ar-
chitecture for an efficient scanning of a genomic
database according to user rules (patterns). Be-
fore conclusion, we experiment and compare our
programmable hardware platform, made of a
workstation and a programmable prototype re-
alized by a Research Center of Digital Equip-

ment Corporation, with the workstation itself,
and show that the latter is unable to scan the
entire database in a human-scale time period.

2 Programmable hardware :
an overview

The first requirement of artificial cognitive sys-
tems is that the increase in performance neces-
sary for a complex set of actions be controlled
from within the system. As in many other do-
mains we have to deal with the trade-off between
generality and performance, in other words pro-
grammable computers or special purpose com-
puters. We propose programmable hardware to
bridge the gap between flexibility and comput-
ing power.

2.1 Programmable hardware

The programmable hardware concept, as well
as its implementation with Field Programmable
Gate Arrays (FPGAs), was introduced by differ-
ent teams at the end of the 80’s. Vuillemin, Lo-
presti and Kean described various systems based
on this concept [3,8,9], and indeed, this concept
has been first proposed in the literature since
the 70’s. One of the first t o have expressed it
was Schaffner [18]. However, it was only with
the arrival of the SRAM based FPGA in 1985
by Xilinx that it became possible to implement
this concept.

This flexibility results from the possibility
to adapt the hardware to any kind of applica-
tion with a development time similar to that
of software design. Execution time should be
compared to that of special-purpose hardware
thanks to the realization, through a download-
able bitstream, of any synchronous logic circuits
directly at runtime [6, 1, 21. Furthermore, by in-
tegrating some data only known at runtime into
the design process, we can increase the behav-
ioral specification of the application. This opti-
mization then increases the overall performance
of the system. The aim of dynamic reconfigura-
tion is t o bridge the performance gap between
flexible FPGA and full custom ASIC (Applica-
tion Specific Integrated Circuit). In addition,
this technique enables the use of intrinsic bit
level parallelism without the overhead of a com-
munication network, as with most general pur-
pose parallel machines. Ganglion, for example, a
programmable hardware connectionist classifier
realized by C. Cox and W. Blanz [6] that opened
the way to real utilization of the concept of re-
configuration, achieved much of the performance
and density benefits from full-custom circuits.

626

1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 May 1997, Adelaide, Australia. Editor, L.C. Jain

2.2 FPGA
A FPGA is a grid of small memory 16x1 bits in-
terconnected by a network across the whole grid,
as shown in Figure 2.

Switch Matrix

U
U
U
0
U
D
0

A

' O B S - , O 0 0 0 0 0 U U 0 U E

Figure 2: A PAM implementation: the Field
Programmable Gate Array

These small memories are lookup tables that
can implement any logic functions of four vari-
ables. In the FPGA that we used, the lookup
tables are grouped in pairs with two additional
1 bit registers and form a CLB (Configurable
Logic Block), the basic element of the Xilinx
FPGA. The network is fully configurable, each
interconnection being made with pass transis-
tors controlled by the state of a one bit static
memory. The bitmap (bitstream file in FPGA
terminology) formed by all these one bit memo-
ries plus the CLBs look-up table is downloaded
into the FPGA before any execution. Changing
the design of an FPGA is thus done by down-
loading a new bitstream file that configures the
interconnections between binary functions (CLB
look-up table). The reader may refer to [4] for a
complete description of FPGA.

The main advantages of Programmable
Hardware for an AI machine are as follows:

1.

2 .

3.

2.3

Fine grained parallelism respects the time
scales between levels in the system.

Reconfiguration adds flexibility and sup-
presses potential overheads induced by the
use of parallelism.

Reconfiguration of programmable hard-
ware is generally simpler than to repro-
gramme processors network.

Measures of computing power
A common unit for computing power is needed
to compare the computation realized with and
without programmable hardware. For that pur-
pose we use the Bop and Bops previously defined
by Vuillemin in [20].

One Bop circuit is any gate with at most
three inputs and one bit of internal state, such
as a full adder. From this definition we can de-
fine a Bops as one binary operation per second.
A Bops is delivered by any Bop circuit operating
at 1Hz. Obviously GBops, namely lo9 Bops, is
a more useful measure.

Let us now define in Bop the complexity of
some arithmetic and logic operations :

+ One n + n H n + 1 bit addition each
nanosecond is worth n GBops. Subtrac-
tion, integer comparison and logical oper-
ations are bit-wise equivalent to addition.

x One nxm I--) n+m bits multiplication each
nanosecond is worth nm GBops. Division,
integer shifts and transitive bit permuta-
tions are bit-wise equivalent to multiplica-
tion; consequently, so is a n m Look-
up Table, LUT, or Random Acess Memory,
RAM, access.

For example, a 100MHq 32 bit micropro-
cessor that can execute all arithmetic op-
erations in one cycle can deliver a vir-
tual computing power of lo8 x 32 x 32 x
100 GBops. But if the real data are coded
in 4 bits the computing power deIivered
drops to 1.6 GBops.

In this section, we have presented the pro-
grammable Hardware to bridge the gap between
flexibility and computing power. This is a nice
way to get several configurations of an architec-
ture. Now, let us take advantage of this archi-
tecture variability in a multi-level architecture.

3 A three level architecture
We present in this section an architecture to eE-
ciently manage the information streams and the
different tasks at several levels of abstraction,
thanks to programmable hardware. This archi-
tecture is applied to genomic systems.

3.1 Principles of a multi-level ar-
chitecture

In a multi-level architecture, a level :

* should be stable, autonomous and reg-
ular.

has its own language.

* has specific complexity and timing con-
str aints .

has limited computing resources.

627

1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 May 1997, Adelaide, Australia. Editor, L.C. Jain

The architecture we propose is composed of the function formed with a Majority And (MajAnd).
Cognitive, Software, and Hardware Levels. They This function returns ONE if the number of its
are roughly corresponding to the “Performance”, inputs at ONE is over a given threshold. The
“Temporary storage” , and “Primitive actions” user chooses some regularities to build queries,
levels in the architecture of the mind [16, page that are computed on the DECPeRLe-1 Board.
811. They will be detailed in the following. Each Let us now have a look at the levels of the ar-
task is associated with a level in the three-level chitecture.
architecture, according to its computing time,
and communicates with the other levels through
information streams. When tasks no longer re-
spect the constraints imposed by a level, they are
delegated and decomposed to a lower level un-

with time and complexity orders of magnitude.
A level and an information stream are com-

patible when the returned information volume
is included in the level working values, and re-

Categorization Learning

til they reach a point where they are compatible LEGAL regularities

spects the time and complexity constraints of
the level. If the information volume is compati-
ble with the constraints of the level, then the re-
sults are transmitted to the cognitive level, and
are analyzed by the user. If the results are not

Sequence study on DecPerle-1 board

I v . - - - - - - - - j relevant, and in order to provide more useful in-
formation to the user, a new design is generated
for the programmable hardware. This design is
built with the main core of the “faulty” design
with the user query modification. As soon as the
bitstream is generated the process of acquisition
is started again, but now the new information
extracted concerns the method behavior.

Switching from a task acting on user data
to a meta task acting on the behavior of the
previous task is done at the cost of a reconfig-
uration. We should like to point out that the
programmable hardware can perform efficiently
these two tasks.

A previously computed design is loaded onto
the board to produce new results compatible
with the software level. Since library design
loading only requires one second, and since pat-
tern detectors are characterized by their entry
number and the associated threshold, it is very
rapidly decided whether a library design is rele-
vant or not.

3.2 Illustration in genetic domain
Let us now illustrate on a pattern matching sys-
tem the principles of production of an architec-
ture. The global schema of the biological appli-
cation is represented in Fig. 3

A set of examples and counter examples, (ie
biological sequences chosen by the biologist), is
learned by the LEGAL system [15,14], as shown
in Figure 3. For each input set, the learning al-
gorithm produces a set of regularities that char-
acterizes it and its associated concept. A regu-
larity is composed of several patterns associated
with a decision function, which is a non-linear

Figure 3: Overview of the genome scanning
system: Machine learning methods are classi-
fiers. Their results are regularities categories ex-
pressed by sets of Majority ANDs.

3.3 Cognitive Level
This level controls the cognitive tasks of the sys-
tem. It manages the control of learning, by con-
trol of all sets of examples, counter examples,
and rules. It also manages the control of decision
thresholds used by the learning process. The
acquisition of knowledge level is carried out ac-
cording to a “propose and revise” process, where
it is possible to dynamically modify a rule by
modifying the decision threshold associated with
it, thus limiting the number of sequences cor-
responding to the rules. Following this, it is
also possible to modify the validation rate of the
rules. At this point, the operations are restricted
to a’propositional calculation extension, so that
statements can be evaluated in threshold con-
junctive normal form. The objective is to obtain
a volume of results compatible with cognitive ac-
tivity and to engage a deliberation process with
the user.

3.4 Software Level
This level manages the production of learning
rules, which enable the demand for information
to be limited with regard to the system con-
troller. It also produces the decision thresholds
used at the hardware level, as well as request
wiring. During the application, the user chooses,

628

1997 First International Conference on Knowledge-Based Intelligent Electronic System, 21-23 May 1997, Adelaide, Australia. Editor, L.C. Jain

at cognitive level, queries from a set of candidate
queries, furnished by the learning system. All
the requests should be formulated in a standard
way, namely conjunctive normal form, so that
choosing a previously computed design is quite
easy. The queries are applied on patterns. The
patterns are formed by a sub-alphabet vector,
(ie an alphabet reduced to authorized letters at
the position in the pattern) [12, 131. For exam-
ple [A,G]. .[A,T]G.[A,C][C,T,G] is a pattern (.
is a short cut for the whole nucleotides alpha-
bet; [A,T,G,C]) that can match with sequences
such as ATTTGAAC, GATAGcCT and so on.
Thanks to a smart implementation, the com-
plexity of a patterns of length 8 equal 8 Bop.
The different kinds of queries are :

a

0

0

3.5

Motif detection : The query may be the
detection of a motif. For example, the
previously introduced pattern will be ex-
pressed in conjunctive normal form as fol-
lows : (20 = A V 50 = G) A (21 V 7x1) A
(22 V 722) A (2 3 = A V 5 3 = T) A (2 4 =
G)r\(25V’Z5)/\(26 = A V 2 6 = c) A (~ 7 =
C V X ~ = T V X ~ = G)

Looking for biological properties in pat-
terns by using a rule, which is a set of pat-
terns associated with a threshold.

Detecting functional properties as primate
splice junction sites by using a set of rules
and a threshold [15]

Hardware Level

3.5.1 DECPeRLe-1

A DEC workstation running at 40MHz with a
Reconfigurable board constitutes the experimen-
tal platform. The board contains 23 Xilinx FP-
GAS and 4 MBytes of SRAM. 16 FPGAs are
connected in a 2D array with local interconnec-
tion and memory buses. 7360 (23 x 320: 320
CLBs per FPGA), binary functions, equivalent
to 1 bit arithmetic and logic unit (1 Bop), can
be evaluated, at each cycle, in the array. Thus
at 40MHz the virtual computing power of the
board is x 290 GBops. The maximum band-
width between this array and the memory is 320
MBytes/s with an access time from SRAM to
FPGAs of 50 ns. The hardware is connected to
a DecStation 5000/240 by a bus Turbochannel
at 100 MBytes/s peak and around 20 MBytes/s
sustained with the disk.

On this UNIX workstation the design is de-
veloped in C++ and translated through Xilinx
tools into a bitstream configuration ready to be
loaded onto the FPGAs. The bitstream config-
uration can be considered as an unique nanoin-

struction of 1.4 Megabits width that loads itself
in less than 50 ms onto the board [19].

3.5.2 Patterns and Majority And

A Majority And (MajAnd) is a parallel counter
with a threshold output. A (n,m) Parallel
Counter (PCs) is a n-inputs circuit that pro-
duces a m = [log2(n)l bit binary count of the
number of its inputs that are ONES. A (n,m) P C
would have an n Bop complexity if we used the
Dadda decomposition [7]. The threshold func-
tion that transforms a (n,m) PC in MajAnd with
n inputs is implemented with a m I+ 1 look-up
table. The main advantage of this implemen-
tation is the possibility to change the threshold
by writing straight into the bitstream configura-
tion of the FPGAs, and avoid a complete and
slow redesign of the whole FPGA. The degree
of complexity of a MajAnd (n) = n + [log2(n)l
Bop.

3.5.3 Runtime dynamic reprogramma-
tion of rules and Majority thresh-
old

Two kinds of reprogrammation are done here,
the use of which depends on the degree of mod-
ification requiered by the user control. If the
biologist seems to be unsatisfied by his previ-
ous results and needs to try totally new rules
(the size and the number of rules may change),
then the hardware part needs a full reconfigura-
tion. In this case, the system takes in charge the
rules and the Majority And threshold given by
the biologist, and generates automatically the
design from the Xilinx Netlist File t o the bit-
stream. In a second case, the user may just
want to refine his request (rules + threshold),
then, for few modifications, he should not have
to wait a long time for the hardware level t o be
reprogrammed. As a matter of fact, few mod-
ifications in a request should be solved in few
milliseconds. Thus, we directly modify the bit-
stream as recommended in [11][6]. This kind of
reconfiguration increases both the density and
the speed of the design. Once the biologist has
given his rules and threshold, the system changes
the existing bitstream and downloads it in the
FPGA. These two kinds of hardware reprogram-
mation are runnable by naive users since the sys-
tem takes in charge the entire reprogrammation
from a set of user-defined rules.

In this section, we have presented a three-
level architecture, that deals with the cognitive,
software and hardware tasks. Let us now have
a look at the experimentation on the biological
application.

629

1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 May 1997, Adelaide, Australia. Editor, L.C. Jain

4 Real World Experimenta-
tion

Let us identify now the information streams and
evaluate them in a software and hardware im-
plementation.

4.1 Informat ion flows
The streams in our biological application are :

0 Cognitive level/Software level stream :
The stream between cognitive level and
software level provides a query formula-
tion for the software level. In our appli-
cation, the user delegates the building of
a query to a learning machine. The query
is composed of a set of rules and a deci-
sion function using these rules. In return,
the stream from software level to cogni-
tive level presents results to the user, in a
lapse of time compatible with his mental
process.

0 Cognitive level/Hardware level stream :
This stream is an information stream com-
posed on the one hand of cognitive and
software levels, and on the other of soft-
ware and hardware levels. It is used for
rule selection by the user at the Cognitive
level. These rules are then managed by
the software level, to be executed or to be
translated into a sequence of instructions
or a bitstream for the hardware level.

0 Hardware/Software stream : The software
to hardware stream is the characterization
of information intended for the hardware
task level : data from query wiring and de-
cision threshold fixing. Inversely, the hard-
ware to software stream returns results
from the decision mechanism, enabling the
learning system to continue with its task.

4.2 Formal evaluation using BOPS
4.2.1 Software implementation

At the “Software level”, pattern detection is per-
formed as follows :

per cycle (CPI = l) , with perfect cache, pat-
tern detection would take 12 cycles. The Ma-
jAnd calculation does not add any cycles since
it is integrated into pattern detection, and in any
case the result of the match needs to be stored.
Therefore the number of nucleotides per second,
N , scanned with p patterns of length up to 8 is:

1 N =
12 x p x T p p

Where r p p is the cycle time of the micropro-
cessor used, (we assume a microprocessor with a
CPI equal to one).

The evaluation in Bop of this code gives us :

add, compare, or, and, xor = w Bop for

0 load from a p entry table = 10g2(p) x w

w bits by word processor.

Bop.

0 shift i position = i x w.

0 Total : 12 instructions whose 2 shift and 1
load

w Bop.
9w+(w+2w)+log2(p) w = (12+10g2(p))x

For instance with the DECstation 5000/240
with a R3000 microprocessor: rpp = 25 lO-’s,
w = 32, and 32 patterns we can compute:
N M 105nucleotides per second The computing
power used for this task is :

x 32 x (12 +log#‘)) M 1.8GBops
12 x r p p

4.2.2 Hardware implementation

Pattern detectors and MajAnds are imple-
mented spatially rather than temporally since
all operations can be pipelined so that they al-
ways have a combined time equal to one cycle, at
the expense of several latency cycles. An eight
nucleotide detector takes 4 CLBs, a CLB being
the base unit of programmable circuits, and a n
entry MajAnd always takes less than n CLBs.
Hence the scanning time formula :

p = 0 ;
f o r (; p < nb-of-patterns; pi+) {

match = pat terns [i] sequence-window;

Where TFPGA is the cycle time of the pro-
grammable board and ncLB is the number of
CLBs available in a circuit or a multi-circuit

match = match 1 ((match >> 1) &
match = match I ((match >> 2) & mask2)
MajAnd += match == mask3; 3

card. If the number of CLBs required to im-
plement the detectors and the MajAnd is greater
than the total number of available CLBs, the de-
sign needs to be divided into two and therefore

A connection counts as one operation, but has requires two scanning of the database. In our
the value of zero cycles. Given the hypothe- case requests issued by the LEGAL learning pro-
sis that the hardware executes one instruction gram always have less than 800 patterns and 50

630

1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 May 1997, Adelaide, Australia. Editor, L.C. Jain

: .:.....;: '

Humn Gemme
3. .~bi~ ion of nuc!mt!des " . / . I

I' . d . : '... . '

Maj Ands that is the implementation limit into
the DECPeRLe-1 board. The calculation time
in this case is : T F p G A = N x T F P G A .

The computing power required in Bops is
given by : 5 x p x N x T F P G A

5 Experimental timing

5.1 Cognitive Level/Software
Level stream timing

This stream consists in compiling the software
unit, which takes less than 1 second, and in send-
ing the results to the cognitive level. The step
is almost immediate, but still depends on the
method used to present results.

5.2 Cognitive Level/Hardware

Once the user has queried the system, the
queries must be wired onto the hardware unit.
This stream is totally dependent on wiring and
routing tool performance. The system can eas-
ily wire 60 regularities per FPGA XC3090 with
a 8 letter width pattern size. This step requires
around 100 seconds per FPGA for wiring, plac-
ing and downloading the queries onto the hard-
ware unit :

Level stream timing

0 Set of rules translation : 1 second

0 Routage (custom design only) : 10 seconds

0 Bitstream modification & writing of the
LUT : 1 second

0 Loading : 10-I seconds

This genetic sequences study (Fig. 4) com-
pares execution on a Von Neumann machine and
on our experimental platform. The difference
between the standard and the custom reconfig-
uration is in the time needed to reconfigure in
part from a generic design (standard option) or
the whole from scratch (custom option). In this
case the generation of the design takes around
100 seconds during which time data cannot be
treated in the DECPeRLe-1 board.

As a result, execution on the Von Neumann
machine is more performant during this time
period, the two curves intersecting at lo7 nu-
cleotides. Against this, the DECPeRLe-1 card,
which can treat 40 million nucleotides per sec-
ond, takes less than 90 seconds to treat all the
human genome, which would not be possible
with a purely software application. The differ-
ence in execution time is clearly shown in our
model by the levels. The first 100 seconds corre-
spond to a treatment at the Software Level, after

which the order of magnitude is no longer re-
spected and the Hardware Level assisted by the
programmable hardware takes over. The speed
at this level is several orders of magnitude faster,
with the result that execution speed is greatly in-
creased. Systems which have both software and
hardware thus commence execution at the soft-
ware level, and then progress to the hardware
level. The human cognitive mechanisms are re-
spected, because the response time is less than
100 seconds in the general case. A purely soft-
ware execution takes more than 10000 seconds,
which does not allow user cognitive activity. In
addition to this, execution time is number pat-
tern dependent, which is not the case when us-
ing our system (under 800 patterns and 50 Ma-
j And).

IO'

106

lo5

Figure 4: Hardware and software genetic se-
quence study comparison : The %tandard"
curve shows the results for a library-design, and
the "custom" is obtained with a computed de-
sign.

6 Conclusion
Experiments using programmable hardware
have demonstrated their ability t o respect user
interactive time scales when dealing with a data
query situation such as knowledge discovery
in genetic sequence databases. Programmable .
hardware has also shown itself to be flexible,
since it can be applied to the control of a task
during execution by the addition of a piece of
hardware. This control possibility increases the
overall cognitive capacity of the system [lo], and
in our view is the key to the stability and au-
tonomy of the different levels in the architec-
ture. To become intelligent systems, the ma-
chine should be adapted to the problem. This
adaptation may be data-dependent. In this case,

63 1

1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 May 1997, Adelaide, Australia. Editor, L.C. Jain

programmable hardware proposes interesting so-
lutions. But in a global frame, the reconfigurable
architectures are an intermediate step for achiev-
ing the best architecture.

The next step for reconfiguration is for learn-
ing algorithms to be directly implemented into
the hardware, using dynamically reconfigurable
FPGAs. This will open the way for improved
skill acquisition, and hence significantly con-
tribute to the progress of Intelligent Machines.

References
[l] P. M. Athanas and H. F. Silverman. Pro-

cessor reconfiguration through instruction-
set metamorphosis. Computer, 26(3):11-18,
March 1993.

[2] P. Bertin, D. Roncin, and J. Vuillemin. Pro-
grammable active memories: a performance
assessment. In G. Borriello and C. Ebel-
ing, editors, Research on Integrated Sys-
tems: Proceedings of the 1993 Symposium,
pages 88-102, 1993.

[3] Patrice Bertin, Didier Roncin, and Jean
Vuillemin. Introduction to programmable
active memories. In Systolic Array Pro-
cessors, pages 300-309. J. McCanny et al,
1989.

[4] Stephen D. Brown, Robert J. kancis, and
Jonathan Rose Zvonko G Vranesic. Field-
Programmable Gate Arrays. Kluwer Aca-
demic Publishers, 1992.

[5] Comittee on Physical, Mathematical, and
Engineering Sciences. Grand Challenges:
High-performance computing and commu-
nications. National Science Fondation,
Washington D.C., 1991.

[6] C. E. Cox and W. E. Blanz. GAN-
GLION - a fast field-programmable gate ar-
ray implementation of a connectionist clas-
sifier. IEEE Journal of Solid-state Circuits,
27(3):288-299, March 1992.

[7] Luigi Dadda. Some schemes for parallel
multipliers. Alta Frequenza, 19:349-356,
1965.

181 M. Gokhale, W. Holmes, A. Kopser, S. Lu-
cas, R. Minnich, D. Sweely, and D. Lopresti.
Building and using a highly parallel pro-
grammable logic array. IEEE Computer,
24(1):81-89, January 1991.

[9] J. P. Gray and T. A. Kean. Configurable
hardware: A new paradigm for compu-
tation. In Decennial CalTech Conference

on VLSI, pages 277-293, Pasadena, CA,
March 1989.

[lo] Barbara Hayes-Roth. Intelligent con-
trol. Artificial Intelligence, 59(1-2):213-
220, February 1993.

[ll] E. Lemoine and D. Merceron. Run time
reconfiguration of FPG A €or scanning ge-
nomic databases. In D. A. Buell and K. L.
Pocek, editors, Proceedings of IEEE Work-
shop on FPGAs for Custom Computing
Machines, pages 90-98, Napa, CA, April
1995.

[12] Eric Lemoine. Reconfigurable hardware for
molecular biology computing systems. In
Procc. of Int. Conf. on Application-Specific
Array Processors, pages 184-187, 1993.

[13] Eric Lemoine, Joel Quinqueton, and Jean
Sallantin. High speed pattern matching in
genetic data base with reconfigurable hard-
ware. In Procc. of the 2nd Int. Conf. on
Intelligent Systems for Molecular Biology,
pages 269-276. AAAI, 1994.

[14] Engelbert Mephu Nguifo. Galois lat-
tice: A framework for concept learning-
design, evaluation and refinement. In Kout-
sougeras & al, editor, Proc. of 6th Intl. con-
ference on Tools for Artificial Intelligence.
IEEE, November 1994.

[15] Engelbert Mephu Nguifo and Jean Sal-
lantin. Prediction of primate splice junction
gene sequences with a cooperative knowl-
edge acquisition system. In Procc. of the
First Int. Conf. on Intelligent Systems for
Molecular Biology, pages 292-300. AAAI,
1993.

[16] Allen Newell.
tion. Harvard University Press, 1990.

[17] H. Ripoche, E. Mephu Nguifo, and J. Sal-
lantin. Indexing protein sequences with mi-
nos. In Proc of the Genome Informatic
Workshop of Japan, pages 49-58, 1994.

[18] M. Schaffner. Processing by data and pro-
gram blocks. IEEE Transactions on Com-
puters, 27(11):1015-1028, November 1978.

Unified Theories of Cogni-

[19] Herv6 Touati. PerlelDC: a C++ li-
brary for the simulation and generation of
DECPeRLe-1 designs. Technical Report
TN4, Digital Paris Research Laboratory,
1992.

[20] Jean E. Vuillemin. On computing
Lecture Notes on Computer Sci- power.

ences, 782:69-86, December 1993.

632

