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ABSTRACT
Although InfiniBand Architecture is relatively new in the
high performance computing area, it offers many features
which help us to improve the performance of communica-
tion subsystems. One of these features is Remote Direct
Memory Access (RDMA) operations. In this paper, we pro-
pose a new design of MPI over InfiniBand which brings the
benefit of RDMA to not only large messages, but also small
and control messages. We also achieve better scalability by
exploiting application communication pattern and combin-
ing send/receive operations with RDMA operations. Our
RDMA-based MPI implementation currently delivers a la-
tency of 6.8 microseconds for small messages and a peak
bandwidth of 871 Million Bytes (831 Mega Bytes) per sec-
ond. Performance evaluation at the MPI level shows that
for small messages, our RDMA-based design can reduce the
latency by 24%, increase the bandwidth by over 104%, and
reduce the host overhead by up to 22%. For large messages,
we improve performance by reducing the time for transfer-
ring control messages. We have also shown that our new
design is beneficial to MPI collective communication and
NAS Parallel Benchmarks.

1. INTRODUCTION
During the last ten years, the research and industry com-

munities have been proposing and implementing user-level
communication systems to address some of the problems as-
sociated with the traditional networking protocols [25, 3,
19, 24]. The Virtual Interface Architecture (VIA) [8] was
proposed to standardize these efforts. More recently, Infini-
Band Architecture [12] has been introduced which combines
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storage I/O with Inter-Process Communication (IPC).
InfiniBand Architecture offers both channel and mem-

ory semantics. In channel semantics, send and receive op-
erations are used for communication. In memory seman-
tics, Remote Direct Memory Access (RDMA) operations are
used. These two different semantics raise the interesting
question of how to use both of them to design high perfor-
mance communication subsystems.

In high performance computing area, MPI has been the
de facto standard for writing parallel applications. Exist-
ing designs of MPI over VIA [13] and InfiniBand [14] use
send/receive operations for small data messages and con-
trol message and RDMA operations for large data messages.
However, due to their complexity in hardware implementa-
tion and non-transparency to the remote side, send/receive
operations do not perform as well as RDMA operations in
current InfiniBand platforms. Thus these designs have not
achieved the best performance for small data messages and
control messages.

In this paper we propose a method which brings the ben-
efit of RDMA operations to not only large messages, but
also small and control messages. By introducing techniques
such as persistent buffer association and RDMA polling set,
we have addressed several challenging issues in the RDMA-
based MPI design. Instead of using only RDMA operations
for communication, our design combines both send/receive
and RDMA. By taking advantage of send/receive operations
and the Completion Queue (CQ) mechanism offered by In-
finiBand, we are able to simplify our design and achieve both
high performance and scalability.

Our RDMA-based MPI implementation currently delivers
a latency of 6.8 microseconds for small messages and a peak
bandwidth of 871 Million Bytes (831 Mega Bytes) per sec-
ond. Our performance evaluation shows that for small mes-
sages RDMA-based design can reduce the latency by 24%,
increase the bandwidth by over 104%, and reduce the host
overhead by up to 22%. For large messages, we improve per-
formance by reducing the time for transferring control mes-
sages. We have also shown that our new design benefits MPI
collective communication and NAS Parallel Benchmarks.

The rest of this paper is organized as follows: In Section
2 we provide an overview of InfiniBand Architecture. In
Section 3 we present how we have designed our RDMA-
based protocol to support MPI. We discuss detailed design
issues in Section 4. Section 5 describes our implementation.
Performance evaluation is presented in Section 6. In Section



7 we discuss related work. Conclusions and future work are
presented in Section 8.

2. INFINIBAND OVERVIEW
The InfiniBand Architecture (IBA) [12] defines a System

Area Network (SAN) for interconnecting processing nodes
and I/O nodes. It provides the communication and man-
agement infrastructure for inter-processor communication
and I/O. In an InfiniBand network, processing nodes and
I/O nodes are connected to the fabric by Channel Adapters
(CA). Channel Adapters usually have programmable DMA
engines with protection features. There are two kinds of
channel adapters: Host Channel Adapter (HCA) and Tar-
get Channel Adapter (TCA). HCAs sit on processing nodes.
TCAs connect I/O nodes to the fabric.

The InfiniBand communication stack consists of different
layers. The interface presented by Channel adapters to con-
sumers belongs to the transport layer. A queue-based model
is used in this interface. A Queue Pair in InfiniBand Archi-
tecture consists of two queues: a send queue and a receive
queue. The send queue holds instructions to transmit data
and the receive queue holds instructions that describe where
received data is to be placed. Communication operations are
described in Work Queue Requests (WQR), or descriptors,
and submitted to the work queue. Once submitted, a Work
Queue Request becomes a Work Queue Element (WQE).
WQEs are executed by Channel Adapters. The comple-
tion of work queue elements is reported through Comple-
tion Queues (CQs). Once a work queue element is finished,
a completion queue entry is placed in the associated com-
pletion queue. Applications can check the completion queue
to see if any work queue request has been finished.

2.1 Channel and Memory Semantics
InfiniBand Architecture supports both channel and mem-

ory semantics. In channel semantics, send/receive opera-
tions are used for communication. To receive a message,
the programmer posts a receive descriptor which describes
where the message should be put at the receiver side. At
the sender side, the programmer initiates the send operation
by posting a send descriptor. The send descriptor describes
where the source data is but does not specify the destination
address at the receiver side. When the message arrives at
the receiver side, the hardware uses the information in the
receive descriptor to put data in the destination buffer. Mul-
tiple send and receive descriptors can be posted and they are
consumed in FIFO order. The completion of descriptors are
reported through CQs.

In memory semantics, RDMA write and RDMA read op-
erations are used instead of send and receive operations.
These operations are one-sided and do not incur software
overhead at the other side. The sender initiates RDMA op-
erations by posting RDMA descriptors. A descriptor con-
tains both the local data source addresses (multiple data
segments can be specified at the source) and the remote
data destination address. At the sender side, the comple-
tion of an RDMA operation can be reported through CQs.
The operation is transparent to the software layer at the
receiver side. Although InfiniBand Architecture supports
both RDMA read and RDMA write, in the following dis-
cussions we focus on RDMA write because in the current
hardware RDMA write usually has better performance.

There are advantages for using send/receive operations.

First, as long as there are receive operations posted on the
receiver side, the sender can send out messages eagerly with-
out specifying the destination addresses. This matches well
with the usage of eager data messages and some control
messages in MPI. Second, the completion of receive oper-
ations can be detected through CQs. The CQ mechanism
provides a convenient way of notifying the receiver about
incoming messages. On the other hand, using send/receive
operations also has disadvantages. First, the operations
themselves are slower than RDMA operations because they
are more complex at the hardware level. Second, managing
and posting descriptors at the receiver side incur additional
overheads, which further reduce the communication perfor-
mance. Figure 1 shows the latencies of RDMA write and
send/receive operations in our InfiniBand Testbed. (Details
of this testbed are described in Section 6.1.) We can see
that for small message, RDMA write performs better than
send/receive.
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Figure 1: Latency of Send/Receive and RDMA

Similar to the send/receive operations, there are both ad-
vantages and disadvantages for using RDMA operations.
The advantages include better raw performance at hard-
ware level and less receiver overheads. However, if we use
RDMA, the destination address must be known beforehand.
Furthermore, the detection of incoming message must be
handled explicitly at the receiver side.

InfiniBand also supports a variation of RDMA write called
RDMA write with immediate data. In this operation, the
sender specifies an immediate data field with the RDMA
write operation. Then the RDMA write operation is carried
out. Additionally, a receive descriptor is consumed and a
CQ entry is generated which contains the immediate data.
Since this operation also involves the receiver, it has almost
the same overhead as a send/receive operation, as can be
seen in Figure 1.

3. MAPPING MPI PROTOCOLS
InfiniBand Architecture offers a plethora of new mecha-

nisms and services such as channel and memory semantics,
multiple transport services, atomic operations, multicast,
service level and virtual lanes. Many of these mechanisms
and services can be useful in designing a high performance
communication subsystem. In this section, we focus on how
to exploit channel and memory semantics to support MPI.



MPI defines four different communication modes: Stan-
dard, Synchronous, Buffered, and Ready modes. Two inter-
nal protocols, Eager and Rendezvous, are usually used to
implement these four communication modes. In Eager pro-
tocol, the message is pushed to the receiver side regardless
of its state. In Rendezvous protocol, a handshake happens
between the sender and the receiver via control messages
before the data is sent to the receiver side. Usually, Eager
protocol is used for small messages and Rendezvous proto-
col is used for large messages. Figure 2 shows examples of
typical Eager and Rendezvous protocols.

Send

Receive

Rendezvous Procotol

Start
Rendezvous

Reply
Rendezvous

Rendezvous
Data

Finish
Rendezvous

Eager Protocol

Send

Receive

Eager Data

Figure 2: MPI Eager and Rendezvous Protocols

When we are transferring large data buffers, it is bene-
ficial to avoid extra data copies. A zero-copy Rendezvous
protocol implementation can be achieved by using RDMA
write. In this implementation, the buffers are pinned down
in memory and the buffer addresses are exchanged via the
control messages. After that, the data can be written di-
rectly from the source buffer to the destination buffer by
doing RDMA write. Similar approaches have been widely
used for implementing MPI over different interconnects [13,
7, 2].

For small data transfer in Eager protocol and control mes-
sages, the overhead of data copies is small. Therefore, we
need to push messages eagerly toward the other side to
achieve better latency. This requirement matches well with
the properties of send/receive operations. However, as we
have discussed, send/receive operations also have their dis-
advantages such as lower performance and higher overhead.
Next, we discuss different approaches of handling small data
transfer and control messages.

3.1 Send/Receive Based Approach
In this approach, Eager protocol messages and control

messages are transfered using send/receive operations. To
achieve zero-copy, data transfer in Rendezvous protocol uses
RDMA write operation.

In the MPI initialization phase, a reliable connection is set
up between every two processes. For a single process, the
send and receive queues of all connections are associated
with a single CQ. Through this CQ, the completion of all
send and RDMA operations can be detected at the sender
side. The completion of receive operations (or arrival of
incoming messages) can also be detected through the CQ.

InfiniBand Architecture requires that the buffers be pinned
during communication. For eager protocol, the buffer pin-
ning and unpinning overhead is avoided by using a pool of
pre-pinned, fixed size buffers for communication. For send-

ing an Eager data message, the data is copied to one of the
buffers first and sent out from this buffer. At the receiver
side, a number of buffers from the pool are pre-posted. Af-
ter the message is received, the payload is copied to the
destination buffer. The communication of control messages
also uses this buffer pool. In Rendezvous protocol, data
buffers are pinned on-the-fly. However, the buffer pinning
and unpinning overhead can be reduced by using the pin-
down cache technique [10].

To ensure that receive buffers are always posted when a
message comes, a credit based flow control mechanism can
be used. Credit information can be exchanged by piggyback-
ing or using explicit credit control messages. For RDMA op-
erations, flow control is not necessary because they do not
consume receive descriptors.

In MPI, logically every process is able to communicate
with every other process. Therefore, each process can poten-
tially receive incoming messages from every other process.
In send/receive based approach, we only need to check the
CQ for incoming messages. The CQ polling time usually
does not increase with the number of connections. There-
fore, it provides us an efficient and scalable mechanism for
detecting incoming messages. Figure 3 shows the CQ polling
time with respect to different number of connections in our
InfiniBand testbed.
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Figure 3: CQ Polling time

As we mentioned in section 2, there are also disadvantages
for using the send/receive based approach. First, since the
performance of send/receive is not as good as RDMA write,
we cannot achieve the best latency for small data transfer
and control messages. Second, we have to handle tasks such
as allocating and de-allocating buffers from the pre-pinned
buffer pool and re-posting receive descriptors. These tasks
increase the overhead and communication latency.

3.2 RDMA-Based Approach
To overcome the drawbacks of the send/receive based ap-

proach, we have designed an RDMA write based approach
for Eager protocol and control messages. In this approach,
the communication of Eager protocol and control messages
also goes through RDMA write operations. Therefore, we
can achieve lower latency and less overhead. However, two
difficulties must be addressed before we can use RDMA for
data transfer:



• The RDMA destination address must be known before
the communication.

• The receiver side must detect the arrival of incoming
messages.

In current generation InfiniBand hardware, RDMA opera-
tions have high starting overhead. From Figure 4 we can see
that the latency increases significantly if we use two RDMA
write operations instead of one. Thus, it is desirable that we
use as few RDMA operations as possible to transfer a mes-
sage. Ideally, only one RDMA operation should be used.
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Figure 4: Latency of One RDMA Write versus Two
RDMA Writes

To address the first problem, we have introduced a tech-
nique called persistent buffer association. Basically, for each
direction of a connection we use two buffer pools: one at the
sender and one at the receiver. Unlike other approaches in
which the sender may use many buffers for an RDMA write
operation, we have persistent correspondence between each
buffer at the sender side and each buffer at the receiver side.
In other words, at any time each buffer at the sender side
can only be RDMA written to its corresponding buffer at
the receiver side. These associations are established during
the initialization phase and last for the entire execution of
the program. Thus, the destination address is always known
for each RDMA operation.

Persistent buffer association can also reduce the overhead
of building RDMA descriptors. All fields of the descriptors
can be filled out initially except for the data size field. When
we reuse an RDMA buffer, the descriptor can be reused and
only the size field needs to be changed.

The second problem can be broken into two parts: First,
we need to efficiently detect incoming messages for a single
connection. Second, we need to detect incoming messages
for all connections in a process.

For RDMA write operations, the CQ mechanism cannot
be used to report the completion of communication at the
receiver side. The basic idea of detecting message arrival
is to poll on the content of the destination buffer. In our
scheme there are a pool of buffers at both the sender side
and the receiver side. If the sender could use any buffer
in the pool for RDMA write, it would be very difficult for
the receiver to know where to poll for incoming messages.
Therefore we organize the buffers as a ring. The sender uses

buffers in a fixed, circular order so that the receiver always
knows exactly where to expect the next message. The details
of our design will be presented in the next section.

Once we know how to detect incoming messages for a
single connection, multiple connections can be checked by
just polling them one by one. However, the polling time
increases with the number of connections. Therefore this
approach may not scale to large systems with hundreds or
thousands of processes.

3.3 Hybrid Approach
As we can see, RDMA and send/receive operations both

have their advantages and disadvantages. To address the
scalability problem in our previous design, we have enhanced
our previous design by combining both RDMA write and
send/receive operations. It is based on the observation that
in many MPI applications, a process only communicates
with a subset of all other processes. Even for this subset,
not all connections are used equally frequently. Table 1 lists
the average number of communication sources per process
for several large-scale scientific MPI applications [23, 26]
(values for 1024 processors are estimated from application
algorithm discussions in the literature). Therefore, we intro-
duce the concept of RDMA polling set at the receiver side.
In our scheme, each sender has two communication chan-
nels to every other process: a send/receive channel and an
RDMA channel. A sender will only use the RDMA channel
for small messages if the corresponding connection is in the
RDMA polling set at the receiver side. If a connection is not
in the polling set, the sender will fall back on send/receive
operations and the message can be detected through the CQ
at the receiver. The receiver side is responsible for manag-
ing the RDMA polling set. The concept of RDMA polling
set is illustrated in Figure 5. Ideally, the receiver should
put the most frequently used connections into the RDMA
polling set. On the other hand, the polling set should not
be so large that the polling time is hurting performance.

Table 1: Number of distinct sources per process
Application # of processes Average # of sources

64 5.5
sPPM 1024 6

64 0.98
Sphot 1024 1

64 3.5
Sweep3D 1024 4

64 4.94
Samrai4 1024 10

64 6.36
CG 1024 11

By restricting the size of the RDMA polling set, the re-
ceiver can efficiently poll all connections which use RDMA
write for Eager protocol and control messages. Messages
from all other connections can be detected by polling the
CQ. In this way, we not only achieve scalability for polling
but also get the performance benefit of RDMA.

Having two communication channels also helps us to sim-
plify our protocol design. Instead of trying to handle every-
thing through the RDMA channel, we can fall back on the
send/receive channel in some infrequent cases. In the next
section we will discuss how this strategy helps us to simplify
the flow control of RDMA channels.
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Figure 5: RDMA Polling Set

4. DETAILED DESIGN ISSUES
In this section, we discuss detailed issues involved in our

design. First, we present the basic data structure for an
RDMA channel. After that we discuss the communication
issues for a single RDMA channel, including polling algo-
rithm, flow control, reducing sender overhead and ensuring
message order. Then we discuss how a receiver manages the
RDMA polling set.

4.1 Basic Structure of an RDMA Channel
Unlike send/receive channels, RDMA channels are uni-

directional. Figure 6 shows the basic structure of an RDMA
channel. For each RDMA channel, there are a set of fixed
size, pre-registered buffers at both the sender side and the
receiver side. Each buffer at the sender side is persistently
associated with one buffer at the receive side and its content
can only be RDMA written to that buffer.

Tail

Head

Tail

Head

Sender Receiver

Receiver Buffer RingSender Buffer Ring

Figure 6: Basic Structure of an RDMA Channel

On both sides, buffers are organized as rings with the re-
spective head pointers and tail pointers. The buffers run out
for a sender when the head pointer meets the tail pointer.
At the sender side, the head pointer is where the next out-

going message should be copied and RDMA written to the
remote side. After the message is written, the head pointer
is incremented. Later the receive side detects the incoming
message and processes it. Only after this processing, this
buffer can be used again for another RDMA write. The tail
pointer at the sender side is to record those buffers that are
already processed at the receiver side. The sender side alone
cannot decide when to advance the tail pointer. This is done
by a flow control mechanism discussed later.

At the receiver side, the head pointer is where the next
incoming message should go. In order to check incoming
messages, it suffices to just examine the buffer pointed by
the head pointer. The head pointer is incremented after
an incoming message is detected. When we have got an
incoming message, the processing begins. After the process-
ing finishes, the buffer is freed and it can be reused by the
sender. However, the order in which the buffers are freed
may not be the same as the order in which the messages
arrive. Therefore we introduce the tail pointer and some
control fields at the receiver to keep track of these buffers.
The tail pointer advances if and only if the current buffer is
ready for reuse.

4.2 Polling for a Single Connection
In order to detect the arrival of incoming messages for a

single RDMA channel, we need to check the content of the
buffer at the receiver side. In InfiniBand Architecture, the
destination buffers of RDMA operations must be contiguous.
Therefore a simple solution is to use two RDMA writes. The
first one transfers the data and the second one sets a flag.
Please note that by using two RDMA writes, we can be sure
that when the flag is changed, the data must have been in
the buffer because InfiniBand ensures ordering for RDMA
writes.

The above scheme uses two RDMA writes, which increase
the overhead as we have seen in Figure 4. There are two ways
to improve this scheme. First, we can use the gather ability
offered by InfiniBand to combine the two RDMA writes into
one. The second way is to put the flag and the data buffer
together so that they can be sent out by a single RDMA
write. However, in both cases, we need to make sure that
the flag cannot be set before the data is delivered. And to
do this we need to use some knowledge about the implemen-
tation of hardware. In our current platform, gather list are
processed one by one. And for each buffer, data is delivered
in order (the last byte is written last). Thus, we need to put
the flag after the data in the gather list, or to put the flag
at the end of the data. Since using gather list complicates
the implementation and also degrades performance (more
DMA operations needed) as can been in Figure 7, we use
the second approach: putting the flag at the end of the data
buffer. Although the approach uses the in-order implemen-
tation of hardware for RDMA write which is not specified
in the InfiniBand standard, this feature is very likely to be
kept by different hardware designers.

Putting the flag at the end of the data is slightly more
complicated than it looks because the data size is variable.
The receiver side thus has to know where is the end of the
message and where the flag is. To do this, we organize the
buffer as in Figure 8. The sender side sets three fields: head
flag, data size and tail flag before doing the RDMA write.
The receiver first polls on the head flag. Once it notices that
the head flag has been set, it reads the data size. Based on
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Figure 7: Latency of RDMA Write Gather

the data size, it calculates the position of the tail flag and
polls on it.

Data Size

Head Flag

Tail Flag

Data 

Unused 

Poll tail flag

Poll head flag first

Figure 8: RDMA Buffer Structure for Polling

The above scheme has one problem. Since the receive
buffer can be reused for multiple RDMA writes, it may hap-
pen that the value at the tail flag position is the same as
the flag value. In this case, the send side should use two
flag values and switch to another value. But how does the
sender side know the value of the buffer at the receiver side?
We notice that because of the persistent association between
buffers, the buffer on the sender side should have the same
content as the receiver side. Thus what we need to do at
the sender side is the following1 :

1. Set data size.

2. Check the position of the tail flag. If the value is
the same as the primary flag value, use the secondary
value. Otherwise, use the primary value.

3. Set the head and tail flags.

4. Use RDMA write operation to transfer the buffer.

Initially, the head flag at the receiver side is cleared. The
receiver polls by performing the following:

1Another approach called “bottom-fill” was used in [21].

1. Check to see if the head flag is set. Return if not.

2. Read the size and calculate the position of the tail flag.

3. Poll on the tail flag until it is equal to the head flag.

After processing, the receive side clears the head flag.

4.3 Reducing Sender Side Overhead
Using RDMA write for small and control message can

reduce the overhead at the receiver side because the receiver
no longer needs to manage and post receive descriptors. In
this section we describe how the overhead at the sender side
can also be reduced by using our scheme.

At the sender side, there are two kinds of overheads re-
lated to the management of descriptors and buffers. First,
before buffers can be sent out, descriptors must be allocated
and all the fields must be filled. Second, after the operations
are done, completion entries are generated for them in the
CQ and the sender side must process them and take proper
actions such as free the descriptor and the buffer.

To reduce the overheads of allocating and freeing descrip-
tors, we store them together with the buffer. Since we
have persistent association between source and destination
buffers, all fields in the descriptors can be filled only once
and reused except for the data size field. To deal with the
overhead of completion entries in the CQ, we can use the
unsignalled operations in InfiniBand Architecture. These
operations will not generate CQ entries.

4.4 Flow Control for RDMA Channels
As we have mentioned in the previous subsection, before

the sender can reuse an RDMA buffer for another operation,
it must make sure that the receiver has already finished pro-
cessing this buffer. To achieve this, a flow control mechanism
is implemented for the RDMA channel:

• At the sender side, the head pointer is incremented
after each send in the RDMA channel.

• At the receiver side, the head pointer is incremented
after an incoming message is received.

• An RDMA channel cannot be used if its head pointer
is equal to its tail pointer at the sender side. In this
case, we fall back and use the send/receive channel.

• The receiver maintains a credit count for the RDMA
channel. Each time a receiver RDMA buffer is freed,
the credit count is increased if the buffer is pointed
by the tail pointer. Then the receiver goes on and
checks if the following buffers were already freed. If
they were, the credit count and the tail pointer are
incremented for each buffer. The checking is necessary
because although the arrival of messages is in order,
the buffers can be freed out of order.

• For each message sent out (either RDMA channel or
send/receive channel), the receiver will piggyback the
credit count.

• After the sender receives a message with a positive
credit count, it increases its tail pointer.

One thing we should note is that when we run out of
RDMA buffers, we fall back on the send/receive channel for
communication because we have separate flow control for the
send/receive channel. However, these cases do not happen
often and RDMA channels are used most of the time.



4.5 Ensuring Message Order
Since we use Reliable Connection (RC) service provided

by InfiniBand for our design, messages will not be lost and
they are delivered in order. However, in our RDMA-based
approach, there are two potential sources of incoming mes-
sages at the receiver side for each sender: the RDMA chan-
nel and the send/receive channel. The receiver has to poll
on both channels to receive messages. Therefore it might
receive messages out of order. This is not desirable because
in MPI it is necessary to ensure the order of message de-
livery. To address this problem, we introduce a Packet Se-
quence Number (PSN) field in every message. Each receiver
also maintains an Expected Sequence Number (ESN) for ev-
ery connection. When an out-of-order message arrives, the
receiver just switches to the other channel and delays pro-
cessing of the current packet. It stays on the other channel
until the PSN is equal to the current ESN.

4.6 Memory Usage for RDMA Channels
One concern for the RDMA-based design is memory us-

age. For each connection, we need to use two pools of pre-
pinned buffers. If memory consumption for RDMA Chan-
nels is too large, application performance may suffer. Since
the memory usage can potentially increase with the number
of processes in an MPI application, it may also degrade the
scalability of MPI on large-scale clusters.

There are several ways to address this problem. First, we
can set up connections on demand to eliminate unnecessary
connections. Since the number of connections is reduced,
memory usage for RDMA channels is also decreased. Our
previous work [26] implemented this mechanism for MVICH.
We plan to incorporate this feature into our MPI implemen-
tation. Another way to reduce RDMA channel memory us-
age is to limit the number of RDMA channels. By limiting
the size of the RDMA polling set, we can also effectively
reduce the memory consumption.

We can decrease memory usage further by reducing the
number of RDMA buffers for each connection. However,
care must be taken in using this approach because too few
RDMA buffers may result in reduced communication per-
formance. We will evaluate this approach in Section 6.4.

4.7 Polling Set Management
In this subsection we describe our mechanism to manage

polling sets for RDMA channels. Initially, all connections
use send/receive channels. Each receiver is responsible for
adding or deleting connections to the RDMA polling set.
When a receiver decides to add or remove a connection,
it tells the sender by piggybacking or explicitly sending a
control packet. The sender side takes corresponding actions
after receiving this information.

There are different policies that the receiver can use to
manage the RDMA polling set (add or remove a connec-
tion). For an application with only a small number of pro-
cesses, all connections can be put into the RDMA polling
set because the polling time is small. For large applications,
we need to limit the size of RDMA polling sets in order to
reduce the polling time. A simple method is to put first
N (N is the size of the RDMA polling set) channels with
incoming messages into the RDMA polling set. As we can
see from Table 1, this method works for many large scien-
tific applications. For those applications which have a large
number of communication destinations for each process, we

can dynamically manage the RDMA polling sets by monitor-
ing the communication pattern. Another method is to take
some hints from the applications regarding the communica-
tion frequency of each connection. We plan to investigate
along some of these directions.

The order of polling in the RDMA polling set can be very
flexible. Different algorithms such as sequential, circular and
prioritized polling can be used. Polling order can have some
impact on communication performance when the size of the
polling set is relatively large. We also plan to investigate
along some of these directions.

5. IMPLEMENTATION
We have implemented the proposed design on our Infini-

Band testbed, which consists of InfiniHost HCAs and an
InfiniScale switch from Mellanox [17]. The InfiniHost of-
fers a user-level programming interface called VAPI, which
is based on InfiniBand Verbs.

Currently one of the most popular MPI implementations
is MPICH [9] from Argonne National Laboratory. MPICH
uses a layered approach in its design. The platform de-
pendent part of MPICH is encapsulated by an interface
called Abstract Device Interface, which allows MPICH to
be ported to different communication architectures. Our
MPI implementation on Mellanox InfiniHost cards is essen-
tially an ADI2 (the second generation of Abstract Device
Interface) implementation which uses VAPI as the under-
lying communication interface. Our implementation is also
derived from MVICH [13], which is an ADI2 implementa-
tion for VIA. MVICH was developed in Lawrence Berkeley
National Laboratory.

In our MPI implementation, many parameters such as
the size of each RDMA buffer and the threshold from Ea-
ger protocol to Rendezvous protocol can be changed at run
time. By default, we have chosen 2K bytes as both the size
of RDMA buffers and the Eager to Rendezvous threshold
value.

6. PERFORMANCE EVALUATION
In this section we present performance evaluation for our

MPI design. Base MPI performance results are first given.
Then we evaluate impact of using RDMA based design by
comparing it with send/receive based design. We use micro-
benchmarks, collective communication tests as well as ap-
plications (NAS Parallel Benchmarks [18]) to carry out the
comparison. Finally, we use simulation to study the im-
pact of number of RDMA channels on RDMA polling per-
formance.

6.1 Experimental setup
Our experimental testbed consists of a cluster system con-

sisting of 8 SuperMicro SUPER P4DL6 nodes. Each node
has dual Intel Xeon 2.40 GHz processors with a 512K L2
cache at a 400 MHz front side bus. The machines were con-
nected by Mellanox InfiniHost MT23108 DualPort 4X HCA
adapter through an InfiniScale MT43132 Eight 4x Port In-
finiBand Switch. The HCA adapters work under the PCI-X
64-bit 133MHz interfaces. We used the Linux Red Hat 7.2
operating system. The Mellanox InfiniHost HCA SDK build
id is thca-x86-0.1.2-build-001. The adapter firmware build
id is fw-23108-rel-1 17 0000-rc12-build-001. For the tests,
we compiled with Intel(R) C++ and FORTRAN Compilers



for 32-bit applications Version 6.0.1 Build 20020822Z.

6.2 MPI Base Performance
Figures 9 and 10 show the latency and bandwidth of our

RDMA-based MPI implementation. We have achieved a 6.8
microseconds latency for small messages. The peak band-
width is around 871 Million Bytes (831 Mega Bytes)/second.
We have chosen 2K as the threshold for switching from Eager
protocol to Rendezvous protocol. Table 2 compares these
numbers with the results we got from Quadrics Elan3 cards
and Myrinet LANai 2000 cards in the same cluster. (Please
note that Myrinet and Quadrics cards use PCI-II 64x66 MHz
interface while the InfiniHost HCAs use PCI-X 133 MHz in-
terface.) From the table we see that our implementation
performs quite well compared with Quadrics and Myrinet.
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Figure 9: MPI Latency

0

100

200

300

400

500

600

700

800

900

4 16 64 256 1024 4096 16384 65536262144

B
an

dw
id

th
 (

M
ill

io
n 

B
yt

es
/S

ec
on

d)

Message Size (Byte)

Figure 10: MPI Bandwidth

6.2.1 Impact of Eager/Rendezvous Threshold
In MPI applications, it is important to decide when to

switch from Eager protocol to Rendezvous protocol. Usu-
ally this is determined by the size of the message. The ad-
vantage of Eager protocol is that the handshake process in
Rendezvous protocol can be avoided. However, since there
are extra copies in Eager protocol, it is not suitable for large

Table 2: MPI Performance (Smallest Latency and
Peak Bandwidth)

Latency (us) Bandwidth (MB/s)
This implementation 6.8 871

Quadrics 4.7 323
Myrinet/GM 7.3 242

messages. Another issue in using Eager protocol for large
messages is that messages have to be divided into smaller
chunks to fit into communication buffers.

By default, we have chosen 2K Bytes as the threshold to
switch from Eager protocol to Rendezvous protocol. How-
ever, this value should be tuned in different platforms. Fig-
ure 11 shows the impact of different threshold values. Please
note that the switch value for message sizes is actually a lit-
tle less than the given value because in our implementation
the switch value includes other overheads besides the mes-
sage payload (such as the header).

We can see that using a larger threshold can lead to bet-
ter latency or bandwidth for certain message sizes. To get a
smooth transition in the latency graph, the threshold should
be around 13K Bytes. However, as we have mentioned, in-
creasing the threshold value also introduces more communi-
cation overhead because of message copying and fragmenta-
tion. Therefore, the best way to tune this value is probably
to use real applications instead of using just the latency test
alone.

6.3 Impact of RDMA-Based Design
In this section we show the improvements of our RDMA-

based design by comparing it with the send/receive based
design. In both cases, RDMA write is used for data transfer
in Rendezvous protocol. Please note that since our testbed
is small (8 nodes), essentially the RDMA polling set of each
process contains all other processes.

6.3.1 Micro-Benchmarks
The latency test was carried out in a ping-pong fashion

and repeated for 1000 times. In Figure 12, we can see that
RDMA-based design improves MPI latency. For small mes-
sages the improvement is more than 2 microseconds, or 24%
of the latency time. For large messages which go through
the Rendezvous protocol, we can still reduce the latency by
saving time for control messages. The improvement for large
messages is more than 6 microseconds.

The bandwidth test was conducted by letting the sender
push 100 consecutive messages to the receiver and wait for a
reply. Figures 13 and 14 present the bandwidth comparison.
It can be seen that RDMA-based design improves bandwidth
for all message ranges. The impact is quite significant for
small messages, whose performance improves by more than
104%.

LogP model for parallel computing was introduced in [6],
which uses four parameters delay, overhead, gap and proces-
sors to describe a parallel machine. The overhead in com-
munication can have significant impact on application per-
formance, as shown by previous studies [16]. In Figure 15 we
present the host overhead for the latency tests in Figure 12.
We can see that the RDMA-based design can also reduce
the host overhead for communication. For small messages,



the RDMA-based approach can reduce the host overhead by
up to 22%.
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Figure 12: MPI Latency Comparison

6.3.2 MPI Latency Timing Breakdowns
To provide more insights into where time has been spent

in our RDMA based design, we have obtained timing break-
downs for the latency test through instrumentation. Based
on the implementation of MPICH, we have divided the la-
tency time into seven components: sender MPI to ADI
overhead (s mpitoadi), sender ADI layer protocol overhead
(s protocol), sender RDMA posting time (s post), Infini-
Band RDMA transfer time (IBA), receiver completion over-
head (r completion), receiver ADI layer protocol overhead
(r protocol) and receiver ADI to MPI overhead (r aditompi).

In Figure 16 we show the results for different message
sizes. In each pair, the left bar represents the RDMA based
design and the right bar represents the send/receive based
design. We can see that with the RDMA based design, we
have reduced the ADI layer protocol processing overhead, es-
pecially for the receiver. Another major improvement comes
from the better performance of the underlying InfiniBand
RDMA operations compared with send/receiver operations.
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Figure 13: MPI Bandwidth Comparison (Small
Messages)

0

100

200

300

400

500

600

700

800

900

64 256 1024 4096 16384 65536 262144

B
an

dw
id

th
 (

M
ill

io
n 

B
yt

es
/S

ec
on

d)

Message Size (Byte)

RDMA Write
Send/Receive
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Figure 16: MPI Latency Timing Breakdowns

6.3.3 Collective Communication and NAS Parallel
Benchmarks

We have also conducted tests using collective communica-
tion and NAS Parallel Benchmarks. For collective commu-
nication tests, we have chosen barrier, allreduce and broad-
cast, which are among the most frequently used operations
in large scientific applications [23]. The test programs we
have used for barrier and allreduce are the Pallas MPI Bench-
marks [20].

In the barrier test shown in Figure 17, we change the
number of nodes participating in the barrier and measure
the barrier time. We can see that by using RDMA, the
barrier latency can be reduced significantly. In the allreduce
and broadcast tests shown in Figures 18 and 19, the number
of processes is kept at 8 and we change the message size of
the collective communication. From the figures we can see
that RDMA-based design improves the performance of both
allreduce and broadcast operations.

In Figures 20 and 21 we show the results for IS, MG,
LU, CG, FT, SP, and BT programs from the NAS Paral-
lel Benchmark Suite on 4 and 8 nodes. (Class A results are
shown for 4 nodes and class B results are shown for 8 nodes.)
SP and BT require the number of processes to be a square
number. Therefore, their results are not shown for 8 nodes.
Program IS uses mostly large messages and the improve-
ment of the RDMA-based design is very small. For all other
programs, the RDMA-based design brings improvements as
high as 7% in overall application performance.

6.4 Impact of RDMA Channel Memory Usage
In this subsection, we study the impact of RDMA Chan-

nel memory usage on application performance. As we have
mentioned, decreasing the number of RDMA buffers for each
connection can reduce memory consumption of our RDMA
based design and can potentially lead to better scalability.
However, too few RDMA buffers may also result in degraded
communication performance because the sender and the re-
ceiver are tightly coupled in communication.

In our MPI implementation, the default value we have
chosen for the number of RDMA buffers for each connection
is 100. However, this value can be easily changed based on
the size and the communication pattern of different MPI ap-
plications. In Figure 22 we show the performance of class A
NAS applications IS, CG, and MG running on 8 nodes when
we change the number of RDMA buffers. We can see that
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Figure 18: MPI Allreduce Latency (8 Nodes)
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Figure 20: NAS Results on 4 Nodes (Class A)

Figure 21: NAS Results on 8 Nodes (Class B)
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Figure 22: Effect of Changing the Number of
RDMA Buffers for Each Connection

reducing the number of RDMA buffers does not degrade ap-
plication performance. Even with only 5 RDMA buffers for
each connection, the applications can still perform very well.
We have observed similar patterns for other NAS applica-
tions. If these applications keep the same communication
pattern, then only 20M Bytes memory is needed at every
process for a 1024 process MPI application. This indicates
that in these cases memory usage for RDMA channels will
not pose any scalability problems for large scale MPI appli-
cations.

6.5 RDMA Channel Polling Time
In order to study the behavior of the RDMA-based design

for large systems, we have simulated the polling time with
respect to different numbers of connections in the RDMA
polling set. Figure 23 shows the results. We can see that
even though the polling time increases with the number of
connections, the time to poll a connection is very small.
Even with 128 connections, the polling time is only about
1.3 microseconds. This small polling time means that the
size of an RDMA polling can be relatively large without de-
grading performance. For applications shown in Table 1,
a polling set with 16 connections is enough even for 1024
processes. The polling time for 16 connections is only 0.14
microseconds. Thus, our proposed design demonstrates po-
tential for being applied to large systems without perfor-
mance degradation.
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Figure 23: Polling Time of RDMA Channels

7. RELATED WORK
Being the de facto standard of writing parallel applica-

tions, MPI has been implemented for numerous intercon-
nects, including those with remote memory access abili-
ties [22, 2, 11, 4]. [2] relies on the active message inter-
face offered by LAPI. [11] uses PIO for small messages.
Work done in [4] implemented MPI for Cray T3D based
on the SHMEM interface. [22] describes an MPI imple-
mentation over Sun Fire Link Interconnect, which is based
on PIO. MPI over Sun Fire Link uses a sender-managed
buffer scheme for transferring messages. In this approach,
the sender can choose any buffer at the receiver side for do-
ing remote write. To let the receiver know where the data
has been written, another PIO is used to write the buffer
address to a pre-specified location. This extra PIO has very



little overhead. However, the RDMA operations in Infini-
Band Architecture have larger overhead. Therefore, one of
our objectives is to use as few RDMA operations as possible.
Another difference is that InfiniBand offers both channel and
memory semantics and we have shown that it is possible to
combine them to achieve scalability. However, none of the
existing implementation has information regarding the use
of RDMA operations for small data messages and control
messages, nor are the scalability issues in RDMA discussed
in these references.

RDMA operations have been used to implement MPI col-
lective operations. Work in [21] focuses on how to construct
efficient algorithms to implement collective operations by us-
ing RDMA operations. Our work can be used in conjunction
with their work to efficiently transfer short data messages
and control messages.

RDMA operations have also been used to design com-
munication subsystems for databases and file systems [27,
15]. These studies do not address the issue of using RDMA
for control messages. [5] evaluated different communication
schemes for implementing a web server on a cluster con-
nected by VIA. Some of their schemes use RDMA write
for transferring flow control messages and file data. How-
ever, their schemes differ from ours in that they have used
a sender-managed scheme which is similar to [22].

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a new design of MPI over

InfiniBand which brings the benefit of RDMA to not only
large messages, but also small and control messages. We
have proposed designs to achieve better scalability by ex-
ploiting application communication pattern and combining
send/receive operations with RDMA operations. Our per-
formance evaluation at the MPI level shows that for small
messages, our RDMA-based design can reduce the latency
by 24%, increase the bandwidth by over 104%, and reduce
the host overhead by up to 22%. For large messages, we
improve performance by reducing the time for transferring
control messages. We have also shown that our new design
also benefits MPI collective communication and NAS Par-
allel Benchmarks.

There are several directions for our future work. First,
we would like to expand our current work by evaluating it
with larger testbeds and more applications. We also plan
to use similar techniques for designing other communica-
tion subsystems such as those in cluster-based servers and
file systems. We are also working on taking advantage of
other InfiniBand features, such as QoS [1], multicast, differ-
ent classes of services and atomic operations to improve MPI
performance. Another direction we are currently pursuing
is to design new RDMA-based algorithms and protocols to
improve the performance of MPI collective communication.

Software Availability
Our implementation of MPI over InfiniBand described in
this paper is publicly available. It can be downloaded from
http://nowlab.cis.ohio-state.edu/projects/mpi-iba/index.html.
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