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Abstract—With energy consumption becoming one of the first-class optimization parameters in computer system design, compilation
techniques that consider performance and energy simultaneously are expected to play a central role. In particular, compiling a given
application code under performance and energy constraints is becoming an important problem. In this paper, we focus on an on-chip
multiprocessor architecture and present a set of code optimization strategies. We first evaluate an adaptive loop parallelization
strategy (i.e., a strategy that allows each loop nest to execute using a different number of processors if doing so is beneficial) and
measure the potential energy savings when unused processors during execution of a nested loop are shut down (i.e., placed into a
power-down or sleep state). Our results show that shutting down unused processors can lead to as much as 67 percent energy savings
at the expense of up to 17 percent performance loss in a set of array-intensive applications. To eliminate this performance penalty, we
also discuss and evaluate a processor preactivation strategy based on compile-time analysis of nested loops. Based on our
experiments, we conclude that an adaptive loop parallelization strategy combined with idle processor shut down and preactivation can
be very effective in reducing energy consumption without increasing execution time. We then generalize our strategy and present an
application parallelization strategy based on integer linear programming (ILP). Given an array-intensive application, our optimization
strategy determines the number of processors to be used in executing each loop nest based on the objective function and additional
compilation constraints provided by the user/programmer. Our initial experience with this constraint-based optimization strategy shows
that it is very successful in optimizing array-intensive applications on on-chip multiprocessors under multiple energy and performance
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constraints.

Index Terms—On-chip multiprocessor, constrained optimization, embedded systems, energy consumption, adaptive loop

parallelization, integer linear programming.

1 INTRODUCTION
AS the applications ported into System-on-a-Chip (SoC)

architectures become more and more complex, it is
extremely important to have sufficient compute power on
the chip. One way of achieving this is to put multiple
processor cores in a single chip. This “on-chip multi-
processing” strategy has several advantages over an
alternate strategy, which puts a more powerful and
complex processor in the chip. First, the design of an on-
chip multiprocessor composed of multiple simple processor
cores is generally simpler than that of a complex single
processor system [27], [40]. This simplicity also helps
reduce the time spent in verification and validation [38].
Second, an on-chip multiprocessor is expected to result in
better utilization of the silicon space. The extra logic that
would be spent on register renaming, instruction wake-up,
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speculation/prediction, and register bypass on a complex
single processor can be spent for providing higher
bandwidth on an on-chip multiprocessor. Third, an on-chip
multiprocessor architecture can exploit loop-level paralle-
lism at the software level in array-intensive applications. In
contrast, a complex single processor architecture needs to
convert loop-level parallelism to instruction-level paralle-
lism at runtime (that is, dynamically) using sophisticated
(and power-hungry) strategies. During this process, some
loss in parallelism is inevitable. Overall, an on-chip multi-
processor is a suitable platform for executing array-
intensive computations commonly found in embedded
image and video processing applications (though it may
not be the ideal platform for control-intensive applications).

While VLIW/superscalar processors may provide a
certain degree of (instruction level) parallelism, as noted by
Verbauwhede and Nicol [49], they are not scalable to provide
high levels of performance needed by future applications,
particularly those in next-generation wireless environments.
On top of this, the power consumed by these architectures
does not scale linearly as the number of execution units is
increased. This is due to complexity of instruction dispatch
unit, instruction issue unit, and large register files (though
VLIWs are better than superscalar machines on these
aspects). Recently, automatic loop parallelization technology
developed for array-intensive applications has been shown to
be very effective [51]. We believe that array-intensive
embedded applications can also take advantage of this
technology and derive significant performance benefits from
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the on-chip parallelism and low-latency synchronization
provided by an on-chip multiprocessor.

An on-chip multiprocessor improves execution time of
applications using on-chip parallelism. An application
program can be made to run faster by distributing the
work it does over multiple processors on the on-chip
multiprocessor. There is always some part of the program’s
logic that has to be executed serially, by a single processor;
however, in many applications, it is possible to parallelize
some parts of the program code. Suppose, for example, that
there is one loop in the code where the program spends
50 percent of its execution time. If the iterations of this loop
can be divided across two processors so that half of them
are done in one processor while the other half are done at
the same time in the other processor, the whole loop can be
finished in half the time, resulting in a 25 percent reduction
in overall execution time. While this argument favors
increasing the number of processors as much as possible,
there is a limit beyond which using a larger number of
processors might actually degrade performance. This is
because, in many cases, parallelizing a loop entails
interprocessor communication/synchronization. Increasing
the number of processors in general increases the frequency
and volume of this activity. Therefore, after a specific
number of processors is reached, increasing the number of
processors further increases communication/synchroniza-
tion costs so significantly that additional benefits due to
more parallelism may not be able to offset this (note that, in
a sense, this is a consequence of the Amdahl’s Law).

Adaptive parallelization is a compiler-directed optimiza-
tion technique that tunes the number of processors for each
part of the code according to its inherent parallelism. For
example, intrinsic data dependences in a given nested loop
may prevent us from using all processors. In such a case,
trying to use more processors (than necessary) can lead to
an increase in execution time due to increased interpro-
cessor communication/synchronization costs. Similarly, a
small loop bound may also suggest the use of fewer
processors (than available) to execute a given loop. Loops,
in particular, present an excellent optimization scope for
adaptive parallelization. Since, in general, each loop in a
given application might require a different number of
processors to achieve its best performance, it might be
useful to change the number of processors across the loops.
Previous research on large scale high-end parallel machines
[42], [9], [41] reports that adaptive loop parallelization (that
is, executing each loop with the best number of processors
instead of fixing the number of active processors through-
out the entire life of the application) can be effective in
maximizing the utilization of processors.

When adaptive loop parallelization is employed in a given
on-chip multiprocessor, the unused (idle) processors can be
shut down to conserve energy. Depending on the inherent
degree of parallelism in different loop nests of a given code,
such a strategy can lead to significant savings in energy. This
is because shutting down a processor reduces its dynamic
and leakage energy. However, one has to pay a “resynchro-
nization penalty” when a processor placed into a power-
down (sleep) state is requested to participate in computation
(e.g., in the next loop nest). The magnitude of this cost
depends on the time it takes to bring the processor back from
the power-down state. As will be discussed in this paper, in
some cases, it might be useful to “preactivate” a processor
beforeitis actually needed so as to ensure thatitis ready when
it is required to perform the next computation. Such a

preactivation strategy can, if successful, eliminate the
performance penalty due to resynchronization and reduce
energy consumption.

Even if one focuses only on performance, selecting the
number of processors to use in parallelizing loop nests may
not be trivial. When we consider multiple objective
functions at the same time, the problem becomes even
more difficult to address. Suppose, for example, that we
would like to minimize the energy-delay product of a given
loop using parallelization. In order to decide the number of
processors to use, we need to evaluate the impact of
increasing the number of processors on both energy
consumption and execution cycles. If using more processors
does not bring significant reductions in execution time, the
energy-delay product may suffer, as using more processors
means that more processors should be powered on.
Evaluating the impact of increasing the number of
processors on both energy and performance is difficult if
one restricts itself only to static (compile-time available)
information. Finally, the possibility that each loop in a given
application may demand a different number of processors
to generate the best results makes the overall on-chip code
parallelization problem under multiple constraints highly
complex.

In this paper, we focus on a constraint-based optimiza-
tion problem for on-chip multiprocessors and make the
following contributions:

e We evaluate an adaptive code parallelization strat-
egy (which makes use of profiling) and measure the
potential energy savings when unused processors in
an on-chip multiprocessor are shut down. Our
results show that shutting down unused processors
can lead to as much as 67 percent energy savings at
the expense of up to 17 percent performance loss in a
set of array-intensive applications.

e We present a processor preactivation strategy based
on compile-time analysis of nested loops. Based on
our experiments, we conclude that an adaptive loop
parallelization strategy combined with idle proces-
sor shut down and preactivation can be very
effective in reducing energy consumption without
increasing execution time. Our experiments with
preactivation indicate a 39 percent reduction in
energy consumption (on average) as compared to a
scheme without energy management.

e We propose an integer linear programming (ILP)
based strategy to determine the ideal number of
processors to use in parallelizing each loop nest in an
application code to be run on an on-chip multi-
processor. Our strategy has two components. First,
there is a “profiling phase,” where we run (simulate)
each loop nest with a different number of processors
and collect performance and energy data. In the
second phase, called the “optimization phase,” we

formulate the problem of selecting a processor size

(i.e., the number of processors) for each parallel loop

as an integer linear programming (ILP) problem and

solve it using a publicly-available tool. Our ILP-
based approach takes into account multiple con-
straints that can involve execution time and energy
consumption on different hardware components. To
the best of our knowledge, this is the first multi-
constraint-based application parallelization study
for on-chip multiprocessors. We implemented our
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Fig. 1. On-chip multiprocessor architecture and off-chip memory. This is a shared-memory architecture, that is, the entire memory space is shared by

all processors.

ILP-based strategy using an experimental compiler
and customized simulator environment and mea-
sured its effectiveness by applying it to a number of
array-intensive applications. Our results indicate
that this strategy is very successful in determining
the ideal number of processors (for each loop nest in
an array-based application), even under multiple
complex constraints. Our experience also shows that
the ILP-based approach is fast in practice. More
specifically, the maximum time spent in solving the
ILP problem for all applications tested was always
below 100 milliseconds (on a 400MHz SunSparc-
based machine). Since optimizers for embedded
systems can afford longer processing times as
compared to their general-purpose counterparts,
we believe that this optimization time is tolerable.
The remainder of this paper is organized as follows:
Section 2 gives an overview of the on-chip multiprocessor
architecture considered in this paper. Section 3 discusses
our experimental platform. Section 4 demonstrates why
parallelization for minimum execution time and paralleliza-
tion for minimum energy consumption can demand
different strategies. Section 5 discusses how adaptive
parallelization can be employed for improving energy
consumption without degrading performance. Section 6
presents the details of our constraint-based parallelization
strategy and gives experimental results. Section 7 concludes
the paper by summarizing our major contributions.

2 ON-CHIP MULTIPROCESSOR AND LooP
PARALLELIZATION

In this paper, we focus on an on-chip multiprocessor
architecture. The abstract view of this parallel architecture
is shown in Fig. 1. This architecture contains multiple
processors (each with its own instruction and data caches)
and an interprocessor synchronization and clock logic. This is
a shared memory architecture; that is, all interprocessor
communication occurs through reading from and writing
into a shared off-chip memory (also shown in the figure). A
bus-based on-chip interconnect is used to perform inter-
processor synchronization. Such synchronization is neces-
sary for the processors to be synchronized at the beginning
and end of each loop nest they execute. Although we could
include an L2 cache to this architecture (as in the case of [40]),
in this work, we have not done so as the existence of L2 would
not change the main observations made in this paper.

As mentioned in the previous section, an on-chip
multiprocessor architecture has some advantages compared

to out-of-order superscalar machines. Maybe the most
important of these is the simplicity and independence of
the processors. The processors we assume in this study are
single-issue, five-stage pipelined architectures without any
complex branch prediction or data speculation logic. This
brings an important side-advantage in terms of execution
time predictability as it is easier to predict execution time
with simple processors without sophisticated prediction/
speculation logic (a big plus in real-time embedded
environments). Also, each processor can operate indepen-
dently from each other, and the processors engage in
synchronization only to maintain data integrity during
parallel execution.

On-chip multiprocessors are very suitable for array-
intensive embedded applications. This is because many
array-intensive embedded applications are composed of
multiple independent loop nests that operate on large,
multidimensional arrays of signals. An important issue in
such applications is to map the application code to the
embedded architecture in question. Note that, in the on-
chip multiprocessor case, this is relatively simple as, in the
source-code level, we can parallelize each loop nest and
distribute loop iterations across the processors in the on-
chip multiprocessor. If the loop in question is parallelizable,
high execution time benefits can be achieved using this
strategy. In contrast, a superscalar or a VLIW architecture
should map parallel loop iterations to parallel (and some-
times irregular) functional units, which may not form a
good match for the application structure.

An array-intensive embedded application is executed on
our on-chip multiprocessor architecture by “parallelizing its
loops.” Specifically, each loop is parallelized such that its
iterations are distributed across processors. An effective
parallelization strategy should minimize the interprocessor
data communication and synchronization. In other words,
ideally, each processor should be able to execute indepen-
dently without synchronization or communication. How-
ever, as mentioned earlier, in many cases, data dependences
that occur across loop iterations prevent synchronization-
free execution. In addition to effective parallelization, an
equally important issue that affects the behavior of the
application is data locality. Since each processor has its
private data cache, it is very important that most of the time
it finds the requested data item in its cache. Going to large
off-chip shared memory can be very costly from both the
execution cycles and energy consumption perspectives.

During execution, when a parallel loop is reached,
multiple parallel threads are initiated (spawned). When
the parallel execution of the loop is completed, the threads
(each running on a processor) synchronize. If the next loop
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is also parallel, again multiple threads are spawned.
Otherwise (if the next loop is sequential), a single thread
executes it. Our experimental evaluation takes into account
all energy/performance overheads of thread creation,
thread termination, and synchronization.

Bahar and Manne [2] present pipeline balancing, a
technique that dynamically tunes the resources of a
general-purpose processor to the needs of the program.
Marculescu [35] presents a profile-driven energy optimiza-
tion strategy for superscalar architectures. Conte et al. [14]
also discuss adaptive execution for power efficiency. Our
work is different from these in at least two important
aspects. First, we focus on an on-chip multiprocessor
architecture instead of a superscalar machine. Conse-
quently, our analysis necessary to derive the opportunities
for resource shut down is very different from these studies.
Second, we explicitly focus on loop-based applications and
use a compiler to shut down processors completely (not just
one of their functional units and part of their issue width)
based on the degree of loop-level parallelism under
different criteria.

Apart from academic interest [40], [27], chip multi-
processor architectures are also finding their way into
commercial products. A number of architectures, such as
IBM’s Power4, Sun’s MAJC-5200, and MP98, contain multi-
ple processors (currently between two and four) on a single
die [34], [37], [13]. To quote a recent news article [12]: “Sun
and IBM agree on one thing: chip multiprocessing is the
next big thing in CPU design. In the past, engineers
squeezed out faster performance with better process
technology, better microarchitectures, and better compilers.
Chip multiprocessing adds another performance tool that
directly addresses the Holy Grail of processor evolution.
This could take us beyond Moore’s Law. That is great news
for users but one more challenge for software program-
mers.” Therefore, we believe that software support for on-
chip multiprocessor will be very important in the future.

More recently, there have been several efforts for
obtaining accurate energy behavior for on-chip processing
and communication (e.g., see [16] and the references
therein). These studies are complementary to the approach
discussed in this paper and our work can benefit from
accurate energy estimations for on-chip multiprocessor
architectures. Several recent studies have also considered
energy consumption for parallel architectures. [28] explores
the possibility of using single-ISA heterogeneous cores to
attack the power consumption problem. Since the previous
generation cores are much smaller and consume less power,
dynamically switching between cores can bring better
energy efficiency. In [32], Li et al. argue that a core can be
put into sleep mode when it reaches the barrier early. An
earlier study [43] have pointed out that the CMP can be an
energy-efficient alternative to exploiting future billion
transistor designs and also mentioned that voltage scaling
can further complement this architecture. They show
around 9 percent to 15 percent power savings in multi-
media applications that use independent threads. [24]
considers voltage scaling in a multiprocessor-on-chip type
of architecture. In comparison to these studies, this paper
considers a compiler-driven approach to reduce power
consumption through processor shutdown. It also studies
the trade offs between energy, performance, and code size.

3 EXPERIMENTAL PLATFORM

In this section, we discuss our experimental platform and
introduce our benchmarks. We used an in-house, cycle-
accurate energy simulator [50] to measure the energy
consumed in different components of the on-chip multi-
processor, such as processors, caches, off-chip memory,
clock circuitry, interconnect between processors and caches,
and interconnect between caches and off-chip main
memory. Our simulator takes as input a configuration file
and an input code written in C, and produces as output the
energy distribution across different hardware components
and performance data (execution cycles). Each processor is
modeled as a simple five-stage pipeline (with the traditional
IF, ID, EXE, MEM, and WB stages) that issues a single
instruction at each cycle. Extensive clock gating [10] has
been employed to reduce energy consumption in the
pipeline.

The energy model used by our simulator for interconnect
is “transition-sensitive,” that is, it captures the switching
activity on buses. Since simple analytical energy models for
cache memories have proved to be quite reliable [25], our
simulator uses an analytic cache model [46] to capture cache
energy (for 0.1 micron technology). This model takes into
account the cache topology, number of hits /misses, and write
policy, and returns the total amount of energy expended in
the cache. We also assume the existence of an off-chip
memory and assume a fixed per access energy consumption
of 495 nJ (as in [46]). The simulator uses predefined,
transition-sensitive models for each functional unit to
estimate the energy consumption of the core [11]. These
transition-sensitive models contain switch capacitances for a
functional unit for each input transition obtained from VLSI
layouts and extensive HSPICE simulation. Once the func-
tional unit models have been built, they can be reused for
many different architectural configurations. The current
implementation does not model the control circuitry in the
core. This is not a major problem in this study since the energy
consumed by the datapath is expected to be much larger than
the energy consumed by the control logic due to the simple
control logic of our on-chip processors (i.e., single issue, no
speculation). All functional unit energy models used have
been validated to be accurate (within 10 percent) [50]. The
clock subsystem of the target architecture is implemented
using a first level H-tree and a distributed driver approach
that supplies clocking to four main units: data cache,
instruction cache, register file, and datapath (pipeline
registers). The simulated architecture uses static CMOS gates
and single-phase clocking for all sequential logic while all
memory structures are based on the classic 6T cell. We also
model the impact of gating, at different levels and for
different units. The clock network model was validated to
be within 10 percent error from circuit simulation values.
More details can be found in [18]. Default parameters used in
our simulations are listed in Fig. 2 (some of these parameters
are later modified for exploring different aspects of our
strategy). Since not all processors are used in executing a
given loop nest, the unused processors and their instruction
and data caches can be placed into a power-down (sleep)
mode (state). In the power-down state, the processor and
caches consume only a small percentage of their original (per
cycle) leakage energy. However, when a processor and its
data and instruction caches in the sleep state are needed, they
need to be reactivated (resynchronized). This resynchroniza-
tion costs extra execution cycles as well as extra energy
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Simulation Parameter Value
Processor Speed 400MHz
Number of Processors 8
4KB
Instruction Cache 2-way associative
32 byte blocks
2 cycle latency
4KB
Data Cache 2-way associative
32 byte blocks
2 cycle latency
Memory 32 MB
80 cycle latency
Cache Dynamic Energy Consumption 0.60 nJ/access

Off-Chip Memory Dynamic Energy Consumption 4.95 nJ/access

Leakage Energy Consumption for 32 bytes

Active State 4.49 pl/cycle
Sleep State 0.92 pl/cycle
Resynchronization Time 20 msec

Fig. 2. Default simulation parameters used in this study. Some of these
parameters are later modified to conduct a sensitivity analysis.

consumption. In this study, we assumed a resynchronization
latency of 20 msec (a very conservative estimate) and a full
leakage energy consumption during resynchronization per-
iod. Also, we model a state-preserving cache turn-off
strategy, similar to that proposed in [19]. In this architecture,
when the cache is turned off, the contents are maintained.
Since in our on-chip multiprocessor interprocessor synchro-
nization is through a bus-based mechanism, we modeled its
energy consumption as that of placing 8 bits into the
interconnect (one for each processor) and the associated
control register update (to set/reset the synchronization bit).
Note that processors share data through off-chip memory;
that is, there is no extra interconnect for explicit interpro-
cessor data communication. We also model the energy
consumption due to spawning multiple threads to be
executed on processors, synchronizing them at the end of
each parallel loop, and resynchronization penalty (waking up
time). This is achieved by calculating the energy consumed
due to executing the code fragments that perform these
spawning/synchronization/resynchronization tasks. Unless
stated otherwise, all caches in our on-chip multiprocessor are
4KB, 2-way set-associative with a write-back policy and a line
(block) size of 32 bytes. The on-chip multiprocessor in
consideration has eight identical processors. The cache access
latency is 2 cycles and an off-chip memory access takes
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80 cycles. In this work, our focus is on the on-chip multi-
processor and we donot apply any energy optimization to the
off-chip memory.

An important energy component of interest is the energy
spent during cache coherence. In this work, we assume a
MESI-based coherence scheme across the caches. MESI is an
invalidation-based protocol for write-back caches used in
multiprocessor machines. In this protocol, a cache line can be
in one of four states: modified (M) or dirty, exclusive-clean (E),
shared (S), and invalid (I); and each cache maintains the state
information for all the lines it currently has. The state I means
that the line is invalid. M indicates that only the cache under
consideration has a valid copy of the line, and the copy in the
main memory is stale. E means that only the cache under
consideration has a copy of the line which is the same as the
corresponding copy in the main memory. Finally, S means
that potentially two or more processors have this line in their
caches in an unmodified form. Note that state E helps reduce
bus traffic for sequential portions of the code where data isnot
shared. More detailed information on MESI protocol can be
found elsewhere [15]. It should be noted that MESI is a snoop-
based protocol, which means that processors continuously
observe the traffic on the bus to take appropriate coherence
actions. Therefore, as far as energy consumption is concerned,
there are two major cost components: snooping the bus for
every action consumes energy and executing the protocol
itself consumes energy. An important characteristic of our
simulator is that it can model a MESI-based system (including
theenergy spentonbussnooping, cachelookups, maintaining
state transitions, and cache line invalidations). Therefore, all
the energy results that we present include the energy cost of
the coherence activity as well.

Fig. 3 lists the 13 array-based benchmark codes used in
this study and their important characteristics. 3step-1log,
full-search, hier, and parallel-hier are four
different motion estimation implementations; aps, bmcm,
eflux, and tsf are from Perfect Club benchmarks [6]; and
btrix and tomcatv are from Spec benchmarks. adi is
from Livermore kernels and the remaining codes are array-
based versions of the DSPstone benchmarks [54]. The
second column gives total input size and the third column
shows the number of loop nests in each code. The
remaining columns of this table will be discussed later.

All necessary code modifications (including the preactiva-
tion strategy that will be discussed later in the paper) have
been implemented using the SUIF compiler infrastructure [1]

Benchmark Input Number of | Average Number Dynamic Leakage Energy
Name Size Loop Nests of Processors Energy L=01 | L=05 | L=1
3step-log 203.54KB 3 2:33 85168.831 | 13046.127 65230.661 | 130461.310
adi 60.65KB 2 4.50 1695.330 228.224 1141.080 2282.162
aps 137.23KB 3 1.00 680.268 322.631 1613.146 3226.302
bmem 32.84KB 4 2.00 2033.761 350.461 1752.298 3504.608
btrix 5.89MB 7 4.00 54039.682 6321.926 31609.647 63219.303
eflux 86.70KB 2 2.50 7964.981 1055.575 5277.888 10555.778
full-search 203.54KB 3 3.33 485396.247 | 59391.218 | 296956.089 | 593912.187
hier 203.54KB 7 2.29 47842.538 8306.580 41532.890 83065.776
lms 80.00KB 4 1.75 2419.827 608.044 3040.192 6080.374
n-real-updates 20.00KB 3 4.00 1484.882 177.742 888.720 1777.437
parallel-hier 203.54KB 5 2.00 77027.023 | 24578.782 | 122893913 | 245787.832
tomcatv 70.40KB 9 2.66 9136.330 1306.421 6532.083 13064.166
tsf 52.02KB 4 3.50 2941.119 719.353 3596.727 7193.474

Fig. 3. Important characteristics of the benchmark codes used in our experiments. All energy values are in microjoules. L is the ratio between the
“leakage energy consumption per cycle” and the “dynamic energy consumption per access.”
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Fig. 4. (a) Normalized execution cycles and (b) energy consumption with different processor sizes (tomcatv). Note that energy and performance

trends are different from each other.

as a source-to-source translator. SUIF consists of a small
kernel and a toolkit of compiler passes built on top of the
kernel. The kernel defines an intermediate representation,
provides functions to access and manipulate the intermediate
representation, and structures the interface between compiler
passes. The toolkit includes a C front end, a loop-level
parallelism and locality optimizer, an optimizing back end,
and a set of compiler development tools.

In the rest of this paper, unless otherwise stated, when
we mention “energy consumption,” we mean the sum of
the energy consumptions in caches, interconnects, off-chip
memory, processor, and the clock circuitry (all energy
overheads including thread management, interprocessor
synchronization, and cache coherence). All optimized
energy consumptions are given as values “normalized”
with respect to the energy consumed in these components
by the original (unoptimized) version of the code in
question. We do not consider the energy consumed in the
control circuitry and I/O modules since the energy impact
of our optimizations on these units is expected to be
minimal. It is also possible to extend our power manage-
ment strategy to selectively shut down these components
when the compiler detects that they will not be exercised by
a given loop nest.

4 IMPACT OF ON-CHIP PARALLELIZATION ON
ENERGY AND PERFORMANCE

In order to see whether parallelization for energy and
parallelization for performance generate the same behavior
or not, we conducted an initial set of experiments where we
run each loop nest of each code in our experimental suite
using different numbers of processors (ranging from 1 to 8)
and measured the energy consumption and execution
cycles. Since the trends for different benchmarks were
similar, we focus here only on tomcatv, one of our
benchmarks.

Fig. 4 gives the execution time and energy consumption
for each of the nine loop nests of this benchmark. For each
loop nest, the eight bars from left to right correspond to
different numbers of processors from one to eight. Also,
each bar represents a result normalized with respect to the
single processor case (that is, the energy consumption or
execution cycles when the loop nest in question is executed
on a single processor).

From these graphs, we can make several observations.
First, energy and performance trends are different from each
other. Thatis, in a given loop nest, the best processor size from
the energy perspective is (in general) different from the best
processor size from the execution time perspective. This is
because, in many cases, increasing the number of processors
beyond a certain point may continue to improve perfor-
mance, but the extra energy to power on the additional
processor (and its caches) may offset any potential energy
benefits coming from the reduced execution cycles. Second,
for a given nest, increasing the number of processors does not
always reduce execution cycles. This occurs because there is
an extra performance cost of parallelizing a loop, which
includes spawning parallel threads, interprocessor synchro-
nization during loop execution if there are data dependences,
and synchronizing the threads after the loop execution. If the
loop has not sufficient number of iterations tojustify the use of
a certain number of processors, this extra cost can dominate
the overall performance behavior. Similarly, beyond a
processor size, the energy consumption starts to increase.
Third, the best number of processors from the energy or
performance perspectives depends on the loop nest in
question. That is, different loop nests may require different
processor sizes for the best results, and it does not seem tobe a
good idea to use the same number of processors for all the
nests in a given application. Given these observations, one
can see that it is not easy to determine the ideal number of
processors for each loop nest in a given code to optimize an
objective function that may have both performance and
energy elements. As an example, consider a compilation
(parallelization) scenario where we would like to optimize
energy consumption of the application keeping the execution
time under a predetermined limit. Important questions in this
scenario are 1) whether there are processor sizes for each loop
nest to satisfy this compilation constraint and 2) if there are
multiple solutions, how can one choose the best one? In the
following section, we present a constraint-based adaptive
loop parallelization strategy that addresses this problem.

5 OPTIMIZING FOR ENERGY UNDER MAXIMUM
PERFORMANCE BASED ON ADAPTIVE
PARALLELISM

5.1 Energy Benefits of Adaptive Parallelization

Most published work on parallelism [3], [51] is based on
static techniques, that is, the number of processors that
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Fig. 5. The number of processors that generate the best execution time for each loop nest of each benchmark code in our experimental suite. One
can see that, in general, each loop nest demands a different number of processors for the best execution time.

execute the code is fixed for the entire execution. For
example, if the number of processors that execute a code is
fixed at eight, all parts of the code (e.g., all loop nests) are
executed using the same eight processors. In adaptive
parallelization, on the other hand, the number of processors
can be tailored to the specific needs of each code section
(e.g., a nested loop in array-intensive applications). In other
words, the number of processors that are active at a given
period of time changes dynamically as the program
executes. For instance, an adaptive parallelization strategy
can use four, six, two, and eight processors to execute the
first four loop nests in a given code. There are two
important issues that need to be addressed in designing
an effective adaptive parallelization strategy for an on-chip
multiprocessor:

e  Mechanism: How is the number of processors to
execute each code section determined? There are at
least two ways of determining the number of
processors (per loop nest): the dynamic approach
and the static approach. The first option is adopting
a fully-dynamic strategy, whereby the number of
processors (for each nest) is decided in the course of
execution (at runtime). While this approach is
expected to generate better results once the number
of processors has been decided (as it can take
runtime code behavior and dynamic resource con-
straints into account), it may also incur some
performance overhead during the process of deter-
mining the number of processors. This overhead can,
in some cases, offset the potential benefits of
adaptive parallelism. In the second option, the
number of processors for each loop nest is decided
at compile-time. This approach has a compile-time
overhead but it does not lead to much runtime
penalty. In this paper, we adopt a profile-driven
static approach. It should be emphasized, however,
that although our approach determines the number
of processors statically at compile-time, the activa-
tion/deactivation of processors and their caches
occurs dynamically at runtime.

e Policy: What are the criterion which we decide the
number of processors based on? An optimizing
compiler can target different objective functions,
such as minimizing execution time of the compiled
code, reducing executable size, improving power or
energy behavior of the generated code, and so on. In
this section, we use reducing execution time as the

main goal in deciding the number of processors to be
used for each loop nest (in the next section, we
present a more general optimization strategy). In
other words, our objective is to optimize energy
consumption with as little negative impact as
possible on performance. More specifically, for each
loop nest, we try to determine the number of
processors that lead to faster execution than the
other alternatives. In order to determine the number
of processors that result in the best execution time
for a given loop nest, we employed profiling. That is,
using our simulator, we executed the loop nest with
different numbers of processors and selected the one
with the minimum execution time. While this
profile-based strategy can increase the compilation
time, in many embedded systems, large compilation
times can be tolerated since these systems typically
run a single (or a small set of) application(s) and the
code quality is very critical.

Fig. 5 shows, for each nest of each benchmark code in our
experimental suite, the number of processors that generated
the “best execution time.” The data presented in this figure
clearly illustrates that, in many cases, using only a small
subset of processors (recall that our on-chip multiprocessor
has a total of eight processors) generates the best perfor-
mance. Clearly, this is a strong motivation for shutting off
unused processors to save energy. The fourth column of Fig. 3
shows the average number of processors (that gives the “best
execution time”) per loop nest for each benchmark.

Having explained our mechanism and policy for
determining the number of processors for executing each
loop nest, we next focus on our modifications to the input
code. Once the number of processors for each loop nest has
been determined, our strategy inserts (using SUIF [1]) the
processor activation/deactivation calls in the code. A
processor activation call brings a processor from the
power-down state to the active state and takes a specific
amount of time to complete (resynchronization penalty). A
deactivation call, on the other hand, places an active
processor into the power-down state. We assume that it
returns immediately, i.e., it does not incur any additional
penalty. Our framework, however, is general enough to
accommodate scenarios where deactivation calls can also
have energy and performance costs. Each activation/
deactivation call takes the processor id as input parameter
and returns a status code indicating whether the action has
successfully been performed. It should be emphasized that
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Fig. 6. (a) Original idle/active pattern (execution profile) for a given processor. (b) Saving energy using shut down and incurring performance penalty.
(c) Preactivation strategy. (d)-(e) Wrong preactivation timings. Note that the point at which resynchronization activity starts influences both

performance and energy consumption.

a wrong placement of activation/deactivation calls does not
create a correctness issue, though it may negatively affect
the overall performance. Also, the energy values reported in
this paper include the energy overheads of the activation/
deactivation calls.

Afterinserting activation/deactivation calls, our approach
performs two optimizations. First, it ensures that in moving
from one loop nest to another, the currentactive/idle status of
processors is maintained as much as possible. As an example,
inmoving from aloop nest running with & processors toaloop
nest that will be executing using j (> k) processors, the same
kprocessors that are used in the first loop nest are used in the
second one as well; only an additional j — k& processors are
activated. Similarly, in moving from a loop nest running with
k processors to a loop nest that will be executing using
J processors where j < k, the only action performed is to
deactivate k — j processors of those executing the first nest.
The second optimization that we perform targets at reducing
the number of activation/deactivation calls inserted in the
code when there exists a conditional flow of execution. For
example, if there is an if-then-else construct with a separate
loop nest in each branch, the compiler hoists the activation/
deactivation calls (to be inserted for each loop) above the said
construct if both the loop nests demand the same number of
processors. A similar optimization is also used at the program
points where multiple flows of control merge. The details of
this optimization are omitted as their discussion is not
essential for the study presented in this paper.

This energy optimization scheme does not pay any
attention to reducing the performance overhead due to
resynchronization penalty. Consequently, this approach can
result in an increase in execution time. Whether such an
increase can be tolerated or not depends largely on the
potential energy gains. To illustrate this, let us consider the
execution profile of a single processor given in Fig. 6a. The
execution profile is broken up into two pieces, each
corresponding to a separate loop nest. The processor is idle
in the firstloop nestand active (used) in the second one. Using
our energy-optimization approach gives the modified execu-
tion profile shown in Fig. 6b. Note that, here, the processor is
“shut down” in the idle period. It is easy to observe from this
profile that when the processor is requested to perform
computation in the second loop nest, it first needs to wait
some amount of time (resynchronization penalty, RP). Let ¢,,
t;, and t; denote the active period, idle period, and
resynchronization time, respectively (in cycles). Also, let e,,
e;, and e, denote the per cycle energy consumptions for,
respectively, the active period, idle period (only when the

processor is shut down), and resynchronization period. As a
result of energy optimization, the length of the original
execution profile increases from ¢; +t, to t; +ts +t,. The
energy consumption of the profile, on the other hand, changes
from (t; + to)eq to tie; + tses + tye,. Assuming conservatively
thate, = (e, +¢;)/ 2vand e; = ke,, where kis a coefficient less
than one (that is, the energy reduction factor, ERF), this
scheme saves energy if:

(ti + ta)ea > tie; +1s (ea ;_ ei) + taeq

t, t,
> <tz +5>€1 + (ta +§)€a

k+1
> <kti+ta+—; ts>ea.

Consequently, energy saving is possible if: 1t < (1 — k)t;.

We have evaluated the impact of this energy saving
strategy using our benchmark codes. For each benchmark
code, we have run three versions of it: 1) The original
version. In this version, only the processors (and their
caches and interconnects) that participate in computation
consume dynamic energy, but every processor/cache pair
(whether they participate in the computation or not)
consume leakage energy. 2) In this version, which is
detailed in this section, the processors that do not
participate in computation are placed into the power-down
state. Due to the resynchronization cost, such an approach
leads to a performance penalty. 3) To eliminate this
performance penalty, this version (which is detailed in
Section 5.2) employs a preactivation strategy, using which
the processors/caches are preactivated before they are
actually needed. All three versions use clock gating [10]
where possible.

Fig. 7 shows the energy consumptions for version 2
(“normalized” with respect to version 1). To cover different
scenarios, we performed experiments with different L =
(leakage energy per cycle)/(dynamic energy per access) values.
This ratio is used for all hardware components of interest.
Specifically, we experimented with three different values of
L: 0.1, 0.5, and 1. We believe that as leakage is becoming an
important part of overall energy budget [10], [8], the
experiments with large L values (e.g., 1) will be more
indicative of future trends. In particular, our experiments
with L = 1 aims at capturing the anticipated importance of

1. This assumption is not critical, and our experiments with other values
of e,, including e, = e,, showed also similar trends.
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Fig. 7. Normalized energy consumption (version 2). All the values are
obtained assuming that a full leakage energy is consumed during the
resynchronization periods.

leakage energy in future. Note that leakage is expected to
become the dominant part of energy consumption for 0.10
micron (and below) technologies for the typical internal
junction temperatures in a chip [10]. All other parameters
are as given in Fig. 2.

The fifth column in Fig. 3 gives the overall dynamic energy
consumption for version 1. The last three columns show the
leakage energy consumption for these three different L values
for the same version. In our experiments, we also modified
the energy reduction factor (ERF). Specifically, we used ERF =
0.1 and ERF = 0.2. Note that these values are in reasonable
range (if not conservative) for several leakage saving
techniques such as [19], [26], [31]. The results in Fig. 7 include
all energy overheads associated resynchronization, thread spawn-
ing and synchronization, and cache coherence activities. We see
thatsavings for configurations (L=0.1; ERF=0.1)and (L=0.1;
ERF = 0.2) are 13.9 percent and 13.3 percent, respectively.
When we increase L to 0.5, the savings for the cases ERF = 0.1
and ERF = 0.2 move to 43.9 percent and 41.8 percent,
respectively. Finally, with (L = 1.0; ERF = 0.1) and (L = 1.0;
ERF = 0.2), the energy savings climb up to 59.7 percent and
57.1 percent. All the values are obtained assuming that a full
leakage energy is consumed during the resynchronization
periods and that it takes 20 milliseconds to wake up the
processor/cache.

While these results indicate large energy savings, delaying
waking up a processor until it is actually needed can hurt
performance. Fig. 8 shows, for each benchmark, the increase
in execution time (over version 1) when processor shut down
isemployed (i.e., when version 2 is used). We observe that the
increase in execution time ranges from 0 percent to 17 percent,
averaging on 5.3 percent. The reason that two benchmarks
(aps and n-real-updates) do not experience any perfor-
mance overhead is the fact that each loop in these two codes
work with the same number of processors (see Fig. 5);
consequently, there is no need for processor activation/
deactivation between the loop nests. While this performance
penalty may be tolerable for some embedded designs, we also
noted that when the resynchronization penalty was doubled
(40 msec), the performance penalties almost doubled (the
detailed results are not given here). Consequently, it is critical
that the degradation in performance should be kept under
control. In the next section, we present our preactivation
strategy, which eliminates almost all performance penalty
due to power management.
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Fig. 8. Percentage performance penalty (version 2). It is assumed that it
takes 20 milliseconds to wake up the processor/cache.

5.2 Processor Preactivation

Preactivation is a strategy that minimizes the performance
impact of energy optimization. It is implemented by
activating a resource earlier than the time it will actually
be required. The objective here is to eliminate the
resynchronization latency that will occur before the
resource can start to function normally. Previous work
focused mainly on preactivation of memory modules [30],
[17] and I/O peripherals [4]. In this section, we demonstrate
how preactivation of inactive processors can improve
performance and energy behavior.

While the processor shut down strategy explained above
can lead to large energy savings, it also increases execution
time. For example, employing our approach increases the
length of the execution profile shown in Fig. 6a by t; cycles
(see Fig. 6b). In this section, we propose a preactivation
strategy in which a processor in the power-down state is
activated before it is actually needed. The objective here is
to ensure that the processor will be ready when it is
required to participate in computation.

Theideal use of this approach isillustrated in Fig. 6¢. In this
case, the processor remains in the power-down state only fora
period of t; — t,. The last ¢, portion of the original idle period
is spent in resynchronization. Consequently, when the
processor is requested, it would have just finished the
resynchronization period. An important issue here is to
determine the exact point in the code to start resynchroniza-
tion. This may not be trivial because resynchronization
penalty is given in terms of cycles and it needs to be
reexpressed in terms of loop iterations since this (i.e., loop
iteration) is the only unit we can use (at source level) to insert
activation/deactivation calls. Essentially, in order to pre-
activate a processor in the power-down state (for a specific
loop nest), we need to determine an iteration (in the previous
loop nest) before which the processor is activated. Let us
assume that each iteration of this previous loop nest takes C'
cycles, and that the resynchronization penalty is t, cycles.
Consequently, in the ideal scenario, the processor in question
should be activated (i.e., should enter to the resynchroniza-
tion period) before the last [%] iterations of the loop. If this is
done properly, for our current example, we obtain an
execution profile such as the one shown in Fig. 6c.

The length of the execution profile in Fig. 6c is the same
as that of Fig. 6a. Its energy consumption, on the other
hand, is:
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E = (t; —t5)e; + tses + taeq

e, + ke
= (tz - ts)kea + & (%) + teeq

1-k
= | kt; +1, +Tts €a;s

assuming, as before, that e; = (e, +¢;)/2 and e; = ke,.
Comparing this expression with the original (unoptimized)
energy consumption, we can see that this approach is
beneficial if: % < t;. This condition is better (that is, easier to
satisfy) than the one derived in the previous section from
both the energy and performance viewpoints.

Figs. 6d and 6e illustrate, on the other hand, the scenarios
where this ideal preactivation strategy does not happen. In
Fig. 6d, the processor activation is delayed. In this case, the
length of the original profileis increased (by the amount of the
delay in processor activation). In comparison, in Fig. 6e, the
processor is activated earlier than necessary. In this case,
there is no increase in execution profile length; however,
depending on how early the processor is activated, this can
cause a significant amount of energy consumption. This is
because the resynchronization period has a fixed length,
beyond which the processor is up and starts to consume
energy. We see that processor preactivation can be an
effective technique provided that it is done at an appropriate
point during execution. There might be several reasons why it
may not be possible to achieve the ideal preactivation. First,
the point at which the activation call is to be inserted may not
be evident from the text of the program. For example, the loop
during which a processor needs to be activated (as it is
required to participate in computation in the next loop) may
have N iterations and our preactivation strategy can
determine that the processor(s) should be activated before
the last M iterations are entered. In order to achieve this, we
need to split the iteration space of the loop (this is called loop
splitting [51]). This, in turn, can increase the code size, which
may notbe tolerated in some memory-constrained embedded
environments. Second, the previous loop may not have a
sufficient number of iterations, in which case we can either
consider the next previous nest or (if it is not possible to do so)
we might have to activate the processor(s) later than optimal
point, thereby incurring a performance penalty. We imple-
mented the preactivation strategy explained above with the
SUIF compiler [1]. Its implementation is very similar to that of
software-based data prefetching [36]. The main difference is
that instead of identifying the next data to be accessed, we try
to predict idleness.

To evaluate our processor preactivation strategy (that is,
version 3), we performed another set of experiments. The
results given in Fig. 9 (normalized with respect to version 1)
indicate that the average energy savings due to configura-
tions (L = 0.1; ERF = 0.1), (L = 0.1; ERF = 0.2), (L = 0.5; ERF =
0.1),(L=0.5;ERF=0.2),(L=1.0;ERF=0.1),and (L=1.0; ERF =
0.2) are 15.5 percent, 15.0 percent, 46.1 percent, 44.4 percent,
61.7 percent, and 59.8 percent, respectively. When we
compare these results with the corresponding values given
in the previous section, we see that preactivation is beneficial
from an energy perspective too. We also observed that, except
for one benchmark (btrix), the compiler was able to easily
insert the preactivation calls. In bt rix, in order to insert the
preactivation calls, the compiler needed to split [51] two loop
nests (using SUIF); this led to a 3 percent increase in the
executable size and a 2 percent degradation in performance.
To conclude, processor preactivation is beneficial from both
energy and performance perspectives.
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Fig. 9. Normalized energy consumption (version 3)). All the values are
obtained assuming that a full leakage energy is consumed during the
resynchronization periods.

In the next set of experiments, we modified two para-
meters: cache size and off-chip memory access energy. When
we increase the cache size to 16KB (2-way, 32 bytes line size),
we observed that there is not much change in energy gains.
For example, the average energy savingsin (L =1.0; ERF=0.1)
and (L = 1.0; ERF = 0.2) are 62.4 percent and 59.3 percent,
respectively. This is because of the fact that increasing cache
size has two conflicting impacts. First, since a larger cache has
also a larger per access dynamic energy and larger per cycle
leakage energy, it tends to increase the contribution of cache
to the overall energy. And, since we shut down cache (when it
is not in use), a larger cache should increase energy savings.
Second, a larger cache can capture more working set and
reduce the number of misses. This, in turn, leads to a
reduction in write-backs (to the cache), which is expected to
reduce the energy savings due to a larger cache. These two
impacts conflict with each other and, in case of the array-
based codes in our experimental suite, they balance out each
other. In order to approximate an embedded (on-chip) main
memory, we conducted another group of experiments where
the per access memory energy is reduced to one tenth of its
original value. Since this reduces the contribution of the main
memory energy to the overall energy budget (and we do not
perform any energy optimization for the main memory), we
observed an increase in energy savings due to processor shut
down combined with preactivation. As a specific example,
with this new value of per-access memory energy, the energy
savings for (L = 1.0; ERF = 0.1) and (L = 1.0; ERF = 0.2)
increased to 68.1 percent and 63.6 percent, respectively.

5.3 Discussion

Our results presented so far demonstrate that employing
adaptive parallelism and placing the unused processors (in
a given loop nest) into a power-down state can bring large
benefits over a strategy that keeps all processors in the
active state during each nest execution. We also demon-
strated that adopting an adaptive parallelization strategy
can impact performance negatively due to frequent power-
offs/ons of processors and their caches. One might argue
that an alternative strategy, which determines the ideal
number of processors for a given program and uses that
processor size throughout the execution would also per-
form very well. An important advantage of such a strategy
would be eliminating the extra latency/energy cost due to
processor deactivations/reactivations across loop nest
boundaries. Its main disadvantage is that the selected



406 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO.5, MAY 2005

Normalized Energy

= 3 x x - 3 (2] 0 e > ‘B
g 5 48 E £ 5 6 8 g 8 8 & @
< © 2 = s £ = T < o
-3 E s 3 8 = g
Q a 7] a 2
= ? = 9
123 - =] ] -
™ 5 s ©

2 S 8
2 o
c
\ O Alternative Strategy W version (ii) O version(iii)
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processor size may be suboptimal for some loop nests (since
it is determined considering the entire application, i.e., not
tuned based on individual loop nests).

To evaluate the performance of such an alternative
strategy and to compare it with our strategies discussed
above (i.e., versions 2 and 3), we performed another set of
experiments. To find the ideal number of processors that
will be used with this alternative strategy, we determined
the energy consumption of each application under all
possible processor sizes and, for each application, deter-
mined the ideal processor size from the energy perspective.
Fig. 10 gives the normalized energy consumption for this
alternative strategy (with L = 0.5 and ERF = 0.1). The results
for versions 2 and 3 are reproduced here for ease of
comparison. As before, all results are normalized with
respect to version 1. We can observe from these results that
versions 2 and 3 generate better energy results than the
alternative strategy. This is because, although the alter-
native strategy does not incur any performance penalty, its
energy behavior is not very good. This is a direct result of
working with a single processor size throughout the
execution. In addition, the energy-delay product of this
alternate strategy is 6.5 percent worse than that achieved by
our approach, when averaged over all benchmarks. That is,
our approach outperforms the alternate strategy from both
energy and energy-delay perspectives. It should also be
noticed that applications are becoming increasingly large
and complex. Consequently, one may expect even larger
variances across the processor demands of different nests in
the future (where we have hundreds of nests), which means
that adaptively changing the number of processors will be
even more important.

Another important issue that we want to discuss is the
sensitivity of the results to the data set sizes. It is to be noted
that, in array-based applications, data access pattern and
communication pattern are dependent on the size of the
data to be processed but not on contents of the data. In fact,
in our simulations, when we make experiments with a
certain input size, the data set (i.e., data contents) used in
profiling and real execution were different and we observed
that this did not make any difference, as compared to the
case where the same data set is used for both profiling and
actual execution. However, when we changed the size of
the input, this made a difference in selection of the optimal
number of processors used for loop nests. In particular,
when we increase the number of processors, our approach

tends to use larger processor sizes for the nests. Specifically,
the average number of processors per nests increased by
16.8 percent when we doubled the input size. While this
reduced our energy savings a bit, we were still able to
achieve significant reductions in energy consumption.

6 OPTIMIZING UNDER MULTIPLE CONSTRAINTS

6.1 ILP Formulation

In the previous section, we presented an adaptive paralle-
lization strategy that saves energy by exploiting the
maximum loop-level parallelism available. In many cases,
maximizing loop parallelism may not be the only possible
objective function to target. In particular, in many energy-
sensitive embedded environments, the objective of compi-
lation can be different from just minimizing the energy
consumption under the best parallelism. Consequently, in
this section, we present a general strategy based on integer
linear programming (ILP) for compiling a given application
for an on-chip multiprocessor under multiple constraints.

ILP provides a set of techniques that solve those
optimization problems in which both the objective function
and constraints are linear functions and the solution
variables are restricted to be integers. The zero-one ILP
(ZILP) is an ILP problem in which each (solution) variable is
restricted to be either zero or one [39]. Prior work [7] used
an ILP-based approach to optimize code under performance
and size (code length) constraints. Our focus here is on
energy-performance trade offs.

Our approach has two phases: a profiling phase and an
optimization phase. In the profiling phase, we run each loop
nest of the application being optimized for each possible
processor size and record the energy consumption and
execution time. However, in profiling a particular loop nest,
we also execute all the preceding loop nests so that we can
capture the impact of internest data reuse. In other words,
the collected profile data reflects the cache hit/miss pattern
of an actual execution. These data are then fed to the second
phase where we use integer linear programming (ILP) to
determine the number of processors for each loop nest,
taking into account the objective function and the compila-
tion constraints. Therefore, the number of processors that
will be used for executing each loop nest in the final
optimized code is decided at compile time. However, the
processor deactivations/reactivations (that is, placing a
processor and its caches into a sleep state and later
transitioning them to active state) take place at runtime.

In more detail, our optimization strategy is built upon
the idea of precomputing the energy consumption and
execution time of multiple versions of each loop nest with
different number of processors and storing them in a table.
To be specific, if we have M different loop nests in a given
array-intensive application and N different processors in
our on-chip multiprocessor, we prepare two tables (one for
energy values and the other one for execution cycles) in
which each loop nest has N entries (that is, a total of NM
energy values and N M execution time values). An entry ¢, j
in these tables gives the energy consumption (or execution
cycles) when loop nest i is executed using j processors.
While in this paper we experimented with an architecture
that contains eight processors, it is not difficult to modify
this strategy to work with a machine with a different
number of processors. After building such a table, our
approach takes into account the energy and performance
constraints (given as input) and determines the ideal
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number of processors for each loop nest. It should be noted
that the number of processors selected for two consecutive
loop nests might be different from each other and, in
switching from one processor size to another, the associated
time and energy overheads need to be accounted for. To
select the processor sizes for loop nests, our approach
formulates the problem as a ZILP and uses a publicly-
available ILP solver [45] (where we explicitly encode the
zero-one conditions).

Let us first make the following definitions, assuming that
1<i< M and 1 <j <N, where N is the total number of
processors and M is the number of nests in the code being
optimized:

e E;;: the estimated energy consumption for loop nest
i when j processors are used to execute it.
o X, the estimated execution time for loop nest i
when j processors are used to execute it.
We use zero-one integer variables s; ; to indicate whether j
processors are selected for executing loop nest ¢ or not.
Specifically, if s;; is 1, this means that j processors are
selected to execute nest ¢ in the final solution. Obviously,

N
ZSm‘ =1 (1)
i=1

should be satisfied for each nest i. Using E; j, X j, and s, ,
the total energy consumption (F) and total execution time
(X) for the application can be expressed as:

=

li

E= si B 4, (2)

N
M= I[)=

= |
SN

X

$ijXij- (3)
i=1

<.
Il
=

It should be noted, however, that these energy and
execution time calculations do not include any overhead
for changing the number of processors between nest
boundaries.

As mentioned earlier, in our experiments, we assumed
that a fixed (constant) amount time (denoted R) is required
to make an inactive processor (i.e., a processor that has been
placed into the sleep state along with its caches) active. We
can compute the execution time overhead as follows:

]\T
nij > Sij— 28171,1«,7 (4)
=
N
yi= Y mij, ()
=1
M
=2

where 2 <i< M and 1 < j < N. In this formulation, n;;
and y; are zero-one variables. Expression (4) restricts n; j to
be 1 if loop nest ¢ has j active processors and loop nest i — 1
has less than j active processors; otherwise, n; ; is restricted
to be 0. Expression (5), on the other hand, sets y; to 1 if loop
nest ¢ has more active processors than loop nest ¢ — 1. Note
that only when loop nest i uses more processors than loop
nest ¢ — 1 do we incur a resynchronization penalty in going
from loop nest ¢ — 1 to loop nest i. Finally, (6) computes the
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total time overhead for activating processors between loop
nest boundaries. Note that R is constant (20 msec in our
experiments). It is also to be noted that, if loop nest i has less
active processors than nest ¢ —1, we have n;; > 0. This
implies that n; ; can be either 0 or 1. However, since n; ; is a
part of the cost function (X + Y) we want to minimize, the
ILP solver always sets n; ; to 0 in this case.

Suppose that, in going from one loop nest to another, we
need to activate new processors. These new processors plus
the ones used to execute the former loop nest are considered
to consume leakage energy for the time period of R. The
energy consumption, including overheads, can be com-
puted as follows:

J
tm = Z Si ks (7)

f—
N
Zi = Zt7‘J — 1, (8)

U > 2Zi-1 — Zi, 9)
Ui Z 1 Ui, (10)
M
U=> u, (11)
=2
M-1 N
Z=r(U+Y ((1=v)> jsij)), (12)
i=1 =1

where 1 <i< M and 1<j<N, except for (9), where
2 <i < M. Here, r is the leakage energy consumption of a
single processor during the time period of R and is
constant. In this formulation, ¢;; is a zero-one variable.
Expression (7) sets t; ; to 1 if loop nest ¢ has j or less than j
active processors. Expression (8) gives the number of
inactive (powered-down) processors at loop nest i. Expres-
sion (9) forces u; to take 0 or a positive value and
determines the number of processors to be activated in
going from loop nest i — 1 to loop nest i. Expression (10)
defines v;, which is used to decide whether there is an
activation period between two loop nests. If v; is 0, then v;
will be 1, meaning that there is no activation period.
Otherwise, if u; is greater than 0, then v; will be 0 (this is
again due to the minimization problem), indicating an
activation period. Expression (11) gives the total number of
processors that need to be activated between loop nest
boundaries. Finally, (12) gives the total leakage energy
overhead for the processors activated between loop nest
boundaries and the processors already active during
activation periods.

Taking into account these energy and performance
overheads, X +Y gives the execution time, including
overheads, and E + Z gives the energy consumption,
including overhead energy. It should also be noted that
expressions for calculating time overhead and energy
overhead are different in a sense that, while we overlap
the time overhead for activated processors between loop
nest boundaries, we consider each activated processor to
consume leakage energy during an activation period.

In some cases, the optimization problem involves con-
straints or an objective function built from energy consump-
tions of different hardware components. One example would
be minimizing main memory energy only (instead of the
overall system energy) under a specific execution time and a
specific overall energy consumption constraints. To capture
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Fig. 11. Our optimization system. Note that the parallelization is performed based on the input provided by the ILP solver.

the energy breakdown across different components, we use
Ed Eld‘J’, E’" ,and EJ" to denote (for loop nest i executing using
J processors) the estimated energy consumptions in datapath,
data cache, instruction cache, and main memory, respec-
tively. If these are the only hardware components of interest,

then we have:
_rd de ic m
Lij=Ej;+ B+ B+ B

We can find the overall main memory (E™), instruction cache

(E'), data cache (E), and datapath energies (E?) as: E™ =

35 2 Elsig, B =30, 50 Eisig, BT =303, Blfsij, and
4= ) Z]‘ iﬁjsw-

6.2 Experiments and Results

To evaluate our ILP-based optimization strategy, we
performed experiments with our array-intensive bench-
marks. Fig. 11 shows the structure of our optimization
framework. The input code is first optimized using classical
data locality optimizations as well as loop transformations
that enhance loop-level parallelism (e.g., loop skewing) [51].
Then, this optimized code is fed to our simulator. The
simulator simulates each loop nest using all possible
processor sizes and records energy consumption (both total
and component-wise) and execution time for each loop nest.
After that, this information, along with the code itself, is fed
to the parallelization module (shown as “parallelizer” in the
figure). This module constructs an ILP formulation (in a
form suitable for the solver) and passes it to the ILP solver.
The solver also takes the compilation constraints and the
objective function as input. The parallelization module then
obtains the solution from the solver and parallelizes the
application (i.e., each loop nest) accordingly. If it is not
possible to parallelize the application under given con-
straints and objective function, an error message is signaled.
If desired, the user can relax some constraints and retry
compilation.”

We first focus on btrix and present results when this
application is compiled under different energy and perfor-
mance constraints. Let us assume for now that the overhead
of dynamically changing the number of processors is zero.
We consider different compilation strategies, whose objec-
tive functions and performance/energy constraints (if any)
are given in the second and third columns, respectively, of
Fig. 13. First, let us focus on two simple cases: Case-I and
Case-IlI. In Case-I, we try to minimize execution time; note
that this is the classical objective of a performance-oriented
compilation strategy. We see from columns four through
ten of Fig. 13 that, in this case, the average number of

2. As a feedback to the user, we return the constraint that led to the
failure.

(selected) processors per loop nest is 4.00. Case-II represents
the other end of the spectrum where we strive for
minimizing the energy consumption (without any perfor-
mance concerns). The average number of processors per
loop nest is 2.00. The last two columns in Fig. 13 give the
energy consumption (in microjoules) and execution time (in
msecs) for each scenario. We observe that optimizing only
for performance results in an energy consumption which is
27.1 percent higher than the best energy-optimized version.
Similarly, optimizing only for energy consumption leads to
an execution time which is 20.0 percent higher than the best
performance-optimized version. These results demonstrate
that parallelization for energy and performance can gen-
erate very different results.

Let us now focus on more interesting compilation
strategies. Case-IIl and Case-IV correspond to minimizing
energy consumption under performance constraints. We
note that the processor sizes selected in these cases are
different from those selected for Case-Il. The average
number of processors per loop nest are 2.57 and 3.28 for
Case-Ill and Case-IV; that is, including a performance
constraint in the compilation increases the average number
of processors used. In addition, we see that a more stringent
performance constraint (X < 31,000) results in a higher
number of processors being selected. Case-V corresponds to
optimizing execution time under energy constraint. One can
observe that, in this case, the number of processors selected
for some loop nests is different from the corresponding
numbers in Case-I. To sum up, when we consider Cases III,
IV, and V, we see that including constraints during
compilation can change the number of processors selected
for executing loop nests. Note also that, without an ILP-
based framework such as the one presented in this paper, it
would be extremely difficult to decide on the number of
processors for each loop nest when compilation scenarios
such as Case-V, Case-II, or Case-III are encountered.

Normalized Energy
58888838
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Fig. 12. Normalized energy consumptions under performance bounds.
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Case Objective Compilation Selected Number of Processors Energy Execution

Function Constraints N1 | N2 | N3 | N4 | N5 | N6 | N7 | Consumption Time
Case-1 minimize X none 2 1 7 6 1 3 8 58629 29219
Case-1I minimize £ none 2 1 2 2 1 2 4 46133 38183
Case-III minimize X < 33000 2 1 4 2 1 3 5 51973 32986
Case-1V minimize F X < 31000 2 1 6 4 1 3 6 54018 30526
Case-V minimize X E < 55000 2 1 6 5 1 3 6 54211 30120
Case-VI minimize £+ Z | X + Y < 33000 2 1 2 2 1 3 3 52875 33205
Case-VII minimize £+ Z | X + Y < 31000 2 1 4 4 1 3 3 54644 30986
Case-VIII | minimize X +Y | E+ Z < 56000 2 1 5 4 1 3 3 55216 30210

Fig. 13. Different compilation strategies, the selected number of processors, energy consumptions, and execution times (bt rix). Note that different
compilation objectives/constraints generate entirely different execution times and energy consumptions.

Up to this point, we have assumed that the overhead of
dynamically changing the number of processors between
loop nests is zero. The remaining cases in Fig. 13 correspond
to scenarios with nonzero energy and performance over-
head for reactivating an inactive processor. Specifically, we
assumed a resynchronization penalty of 20 msec during
which all processors (except the ones in low power) are
assumed to consume leakage energy. We see from Cases VI,
VII, and VIII that when the overhead is taken into account,
the ILP solver tends to keep the number of processors the
same between the neighboring loop nests as much as
possible. In fact, in Cases VI and VIII, our approach
employs only three different processor sizes as compared
to the six processor sizes used in Case-I. However, we also
see that even in these cases, optimizing for performance and
optimizing for energy generate different number of pro-
cessors for most of the loop nests.

In our final set of experiments, we evaluate how our
approach optimizes all the codes in our experimental suite.
Fig. 12 presents the energy consumption obtained using our
approach under performance constraints (similar to Case-
VI). Each bar here represents an energy consumption value
“normalized” with respect to an “alternative strategy” that
uses a fixed number of processors (i.e., the best processor
size for the application in question) throughout the
execution (under the “same maximum execution time
constraint”). Note that to achieve the same execution time
as our ILP-based approach, the mentioned alternative
strategy employs a larger number of processors, leading
to a much higher energy consumption. Specifically, the
results given in this graph indicate that our approach
improves energy behavior by 29.4 percent, compared to the
strategy that fixes the number of processors throughout the
execution. Therefore, we can conclude that tuning the
number of processors according to the requirements of each
loop nest is important to achieve minimum energy values
under performance constraints.

7 CoONCLUDING REMARKS

Based on the observation that in a given array-intensive
code, not all the loop nests require the maximum number of
processors in the on-chip multiprocessor, in this paper, we
first evaluated an adaptive loop parallelization strategy
combined with selective shut down of unused processors.
To eliminate potential performance penalty due to energy
management, we also proposed a processor preactivation
strategy. Our experiments with an eight-processor on-chip
multiprocessor and different parameters (e.g., cache size,
resynchronization overhead, and per access off-chip mem-
ory energy) indicated that our approach is successful in

reducing energy consumption. We then presented an
integer linear programming (ILP) based strategy for
compiling a given array-intensive application in an on-chip
multiprocessor under energy/performance constraints. Our
strategy has two parts: profiling and ILP formulation. At the
end of the optimization process, the compiler determines
the most suitable number of processors that will be used in
optimizing each nest in the code. Our preliminary results
are very encouraging, indicating up to 54 percent savings in
energy compared to a static scheme that uses the maximum
number of available processors for each nest. We also
demonstrated that our approach can optimize a given
application targeting energy consumption of individual
hardware components.
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