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ystems architects have continually sought to design machines with ever- 
greater levels of human-like autonomy and intelligence. It is widely recog- 
nized that the potential for such machines is nearly limitless, as evidenced by 

recent achievements involving autonomous agents, database mining. speech pro- 
cessing and translation. adaptive vision systems, visualization systems and anima- 
tion. The results promise radical change in how we will eventually interact with our 
computers. Currently available systems, of course, are far from attaining real-world 
performance in such areas. largely due to a lack of computational power. 

Researchers of massively parallel artificial intelligence seek to capitalize on ad- 
vances in computer architecture to develop novel AI techniques that fully exploit the 
parallel capabilities of such powerful machines. The combination of AI and mas- 
sively parallel computing will couple sophisticated knowledge-processing models 
with vast computational resources, which has the potential to eliminate the compu- 
tational bottleneck that now prevents many AI systems from offering practical solu- 
tions to real-world problems. 

This article describes an investigation and simulation of a massively parallel Learn- 
ing Classifier System (LCS) that was developed from a specialized associative archi- 
tecture joined with hybrid AI algorithms. The LCS algorithms were specifically in- 
vented to computationally match a massively parallel computer architecture, which 
was a special-purpose design to support the inferencing and learning components of the 
LCS. The LCS's computationally intensive functions include rule matching. parent se- 
lection. replacement selection, and, to a lesser degree, data structure manipulation. 

Learning Classifier Systems 
Learning Classifier Systems, introduced by Holland', are general-purpose ma- 

chine learning systems designed to operate in uncertain. noisy environments that 
provide infrequent and often incomplete feedback. An example of such an environ- 
ment might be a chemical plant, where an LCS would perform process control. An 
LCS comprises three layers: a parallel production system. a credit assignment algo- 
rithm, and classifier discovery algorithms. The production system models the prob- 
lem domain as clusters of highly standardized rules called dassifiers, and it provides 
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a basic match-select-act inferencing cy- 
cle with parallel-classifier activation. The 
credit assignment algorithm evaluates a 
strength for each classifier based on feed- 
back from the environment. This strength 
serves as a measure of a classifier’s utility 
to the LCS and is used both in the infer- 
encing process and in the discovery of 
classifiers. Classifier discovery algorithms 
are typically a combination of genetic al- 
gorithms and several heuristic methods. 
Together, credit assignment and classi- 
fier discovery are the techniques that en- 
dow the LCS with its adaptive capability. 
which is what enables machine learning 
systems to respond to changing condi- 
tions in a problem domain. 

Rule-based production system. The 
LCS production system layer bears many 
similarities to rule-based expert systems. 
In particular, the production system’s 
knowledge is encoded in a set of classi- 
fiers processed by a cyclic match-select- 
act inferencing algorithm. The primary 
difference between the two system types 
lies in the production system’s mecha- 
nisms for simultaneous classifier activa- 
tion, which makes it a parallel-classifier- 
based system. On the other hand. expert 
systems are sequential in nature, permit- 
ting only one rule to be processed at a 
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time. Short-term working memory is 
maintained on a global message lisr that 
stores internally generated messages as 
well as input and output environment 
communication messages. A set of de- 
tectors and effectors provides the mes- 
sage-based interface to the environment. 
An example of a detector is a tempera- 
ture sensor. whereas an example of an ef- 
fector is a robotic arm or a valve. 

Each classifier has a simple I F  con& 
tion(s), THEI\I action syntax (for example. 
IF temperature is greater than loo”, THEN 

open valve). Conditions and actions are 
fixed-length strings and are typically 
identical in length for all classifiers. The 

Bias - Many of the decisions made in the Learning Classi- 
fier System are of a stochastic nature. They are controlled by 
the bias, which is a numeric value stored with each individual 
classifier in the LCS. 
Bid - A  fractional amount of strength paid by a classifier for 
the right to post a message that is used in the bucket brigade 
algorithm. 
Classifier - A basic component of knowledge representa- 
tion in an LCS that is analogous to a rule in expert or produc- 
tion systems. 
Classifier discovery - That part of the system that uses 
heuristics, most notably the genetic algorithm, to explore 
new concepts by creating new classifiers. 
Competition - A process, which is based on a classifier’s 
strength, that decides which classifiers are granted access to 
limited system resources (that is, the message list). 
Crossover - A basic operator in the genetic algorithm that 
generates a new classifier from subsections of parent classi- 
fiers. 
Detectors - Sensors that translate environment conditions 
into the messages processed by the LCS. 
Effectors - Environment manipulators used by the LCS to 
perform actions. 
Fitness - A  relative measure of a classifier’s utility to the 
LCS in solving a given problem. 

symbol alphabet used to compose both 
the condition and action strings is (0,l. #). 
The # symbol represents a don’t-care 
character that can match either 0 or 1. 
Messages are identical in structure to 
conditions and actions, except they con- 
tain no # symbols. 

An LCS production system. therefore, 
consists of a classifier list, a message list. 
a set of detectors. a set of effectors, and a 
feedback mechanism (see Figure 1). Also 
shown are the credit assignment and clas- 
sifier discovery components (layers). The 
basic execution loop governing the inter- 
actions between these components con- 
sists of six steps in a single execution cycle: 

Genetic algorithm - A search-and-optimization algorithm 
based on the mechanics of biological evolution. 
Payment -The strength value transferred between two 
classifiers within the bucket brigade algorithm. Payment is 
made to the classifier that generated a message from the 
classifier that matches the message. 
Payoff - The scalar reinforcement value received from the 
environment as a form of reward or punishment. 
Spatial locality - The physical distribution of classifiers 
within the array of processing elements where parents and 
replacement classifiers are selected such that they are phys- 
ically colocated. 
Specificity -A measure of the number of different mes- 
sages that can match a classifier. A classifier can match from 
one to hundreds of messages that are either internally gener- 
ated by the LCS or issued from the environment. Classifiers 
that are very general match many messages and therefore 
handle default conditions. Classifiers that are very specific 
match few messages and therefore handle special cases in 
the environment. 
Strength - Numeric estimate of fitness that controls many 
aspects of a classifier’s behavior in the LCS, that is, in the 
competition to post new messages and its probability of 
being selected as a parent or a replacement. 
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Figure 2. Example of a genetic algorithm cycle. 

(1) any messages from the environment 
detectors are added to the current mes- 
sage list, (2) the contents of the message 
list are matched against all the conditions 
of all the classifiers, (3) those classifiers 
whose conditions were matched compete 
for the right to post messages to the mes- 
sage list such that those with greater 
strength are favored to win. (4) the win- 
ners of the competition create new mes- 
sages based upon their actions and the 
matching messages, ( 5 )  the new messages 
are added to the message list, and (6) the 
effectors perform any actions specified in 
the message list. 

Credit assignment. Credit assignment 
has long been recognized as a difficult 
problem inherent in any learning system 
composed of many interacting compo- 
nents (for example, classifiers) that con- 
tribute, over time, to the overall perfor- 
mance. The purpose of credit assignment 
in an LCS is to distribute feedback from 
the environment in the form of a scalar 
reinforcement value such that beneficial 
classifiers are rewarded and detrimental 
classifiers are penalized with respect to 
the desired outcomes. 

Holland’s’ proposed bucket brigade al- 
gorithm is a mechanism that can poten- 
tially solve the credit assignment problem 
in an LCS. The objective of the bucket 
brigade algorithm is to distribute payoffs 
received from the environment to the 
appropriate classifiers in the form of 
strength adjustments. When the environ- 
ment determines that the LCS has acted 
in a beneficial way (for example, correctly 
regulates temperature in controlling a 
process), it rewards (pays off) the system 
in terms of added strength. Conversely. if 
the LCS has acted in a harmful way, 
the environment penalizes it by taking 
strength away. This is important because 
these adjustments shape the adaptive 
(learning) ability of the LCS: Classifiers 

whose strength has been increased are 
more likely to be selected when a similar 
problem next needs to be solved, while 
those whose strength has been diminished 
are less likely to be selected. 

As the term bucket brigade implies, 
strength is taken in small quantities from 
those classifiers that lead directly to pay- 
off (active when payoff is received) and 
given to those classifiers that lead indi- 
rectly to payoff (“stage-setting” classi- 
fiers). Conceptually, the bucket brigade 
algorithm operates on chains of classi- 
fiers in which strength is being passed 
backward from the payoff-receiving clas- 
sifier to previously active classifiers. The 
algorithm consists of two steps for each 
posting classifier: (1) reduce the classi- 
fier’s strength by an amount equal to a 
fraction (approximately 1/10) of its 
strength, and (2) distribute this amount 
among classifiers that generated, in the 
previous time-step, the messages that sat- 
isfied this classifier. Classifiers posting ef- 
fector-actuating messages when payoff is 
received share the payoff amount, and 
have their strengths updated accordingly. 

Classifier discovery algorithms. While 
the bucket brigade is an effective mech- 
anism for the temporal aspects of credit 
assignment, it cannot modify the system’s 
knowledge structure. The ability to mod- 
ify the system‘s internal knowledge struc- 
tures is crucial for an LCS to learn new 
behaviors or adapt to a changing domain. 
What is needed is the ability to create 
new classifiers and delete those that have 
proven to be of little value. 

The primary classifier discovery mech- 
anism in an LCS is the genetic aLgo- 
rithm,2 which is why a simplistic string 
representation is used for classifiers. The 
genetic algorithm is a heuristic search 
procedure modeled on natural evolution 
in an attempt to capture evolution’s 
adaptive and optimizing features in a 

practical algorithmic form. 
In an LCS, the genetic algorithm is pe- 

riodically invoked to create new classi- 
fiers. The algorithm’s basic execution 
cycle is: 

(1) from the classifier list, randomly se- 
lect pairs of parent classifiers such 
that higher-strength classifiers have 
a greater chance of selection, 

(2) create new classifiers by applying ge- 
netic operators to the parents, and 

(3) randomly select those classifiers to 
be replaced by the newly generated 
classifiers such that lower-strength 
classifiers have a greater chance of 
selection. 

In the prototypical genetic algorithm, 
there are two genetic operators: crossover 
and mutation, which are applied to the se- 
lected parent classifiers to create new clas- 
sifiers. To form a new classifier, the 
crossover operator pieces together sections 
from two parents. while the mutation op- 
erator, with a very low probability, alters 
randomly selected bits within a classifier. 

Figure 2 shows a single genetic algo- 
rithm cycle that has been applied on clas- 
sifiers with two 4-bit conditions. For 
emphasis, selection of parent and re- 
placement classifiers is shown as a maxi- 
mum or minimum function, respectively. 
Crossover occurs between the fifth and 
sixth bits, while bits 2 and 10 are mutated. 

The associative 
architecture 

There were two key reasons compel- 
ling the choice of a specialized associa- 
tive architecture: (1) searching occurs fre- 
quently during LCS functions (rule 
matching, parent selection, replacement 
selection. and data structure manipula- 
tion), and (2) the independent nature of 
the individual classifiers made them well 
suited to the SIMD (single instruction, 
multiple data) paradigm of associative 
computing. For these reasons, we be- 
lieved a computationally efficient imple- 
mentation was well worth investigation. 

T o  date, two notable parallel LCSs 
include Robertson’s3 *CFS on the Con- 
nection Machine and Dorigo’s4 Alecsys. 
which runs on an array of transputers. Of 
these, T F S  is most similar to the ap- 
proach described here because it is a 
SIMD massively parallel system. Neither 
*CFS nor Alecsys, however, incorporates 
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PE - processing element 
CAM - content-addressable memory 
MRR - multiple response resolver 
Rbus - reconfigurable bus 
ALU - arithmetic logic unit 
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M - single-bit register that stores results of a search of the attached CAM word 
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Figure 3. Three views of associative architecture: (a) high-level generalized block diagram; (b) processing element logic dia- 
gram showing the four single-bit registers: M stores results of a search of the attached CAM word; Wenables transfer of 
word-selects to the attached CAM word; S is a shift register connected to the PE above and below it; and A holds intermedi- 
ate results; (c) reconfigurable bus operation. 

a parallel G A  model as does our imple- 
mentation as described later. A parallel 
genetic algorithm is important for two 
reasons: (1) it extracts as much paral- 
lelism from the algorithms as possible, 
and (2) it improves system performance 
with respect to the number of classifiers. 
Accurate execution times are not avail- 
able for either system, so a meaningful 
performance comparison will not be pos- 
sible until further research is conducted. 

The architecture is a linear array of 
fully associative processing elements 
that consist of 64 bits of content-address- 
able memory, coupled with a 1-bit row 
processor to provide response process- 
ing, activity control, multiple response 
resolution logic, and inter-PE communi- 
cation. Memory and PE size determina- 

tion was based on commercially available 
CAM chips or on those in development, 
as described in the literatures and by 
Stormon during the “Associative Pro- 
cessing and Applications Workshop” 
presented at Syracuse University in 1992. 

Figure 3a shows a high-level view of 
the architecture. The array of PES oper- 
ates in a SIMD mode and therefore has a 
controller that is responsible for gener- 
ating and broadcasting instructions and 
data to the array, as well as accumulat- 
ing and testing global feedback informa- 
tion. The controller contains a data reg- 
ister, which holds the data broadcast to 
the array, and a mask register that deter- 
mines which bit columns of the array are 
active during writes and matches. This ar- 
chitecture is an example of traditional, 

fully parallel associative processing, and 
it provides essential associative comput- 
ing capabilities, such as 

fully parallel search of all memory, 
constant time responderino respon- 
der status, 
multiple response resolution to select 
a single processor from many, 

*efficient broadcast of data and in- 
structions from controller to array, and 
efficient one-to-one data transfer be- 
tween processing elements and the 
control unit.6 

In addition, the architecture provides 
an extended communication capability in 
the form of a reconfigurable bus similar 
to those found in many of the more re- 
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ment cases possible when variables are 
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cent VLSI implementations of associa- 
tive  processor^.^-^ 

Processing element. Figure 3b is a de- 
tailed diagram of the 1-bit processor 
within each PE. There are four single-bit 
registers used for dedicated functions, 
temporary results storage, or both. The 
M register stores the results from a search 
of the attached CAM word. The W reg- 
ister, since it enables the transfer of the 
word-selects to the attached CAM word, 
effectively controls local activity (that is, 
whether the PE executes instructions 
broadcast to it). The S register is a shift 
register connected to the PE directly 
above and below. The A register primar- 
ily holds intermediate data. The ALU 
(arithmetic logic unit) can calculate any 
function of two inputs and can be loaded 
into any of the four registers. 

The multiple response resolver 
(MRR) behaves like a priority circuit. Its 
output is a single bit that corresponds to 
the topmost active bit in the M register. 
The MRR resolves the situation that re- 
sults when multiple PES, which need to 
be processed individually, respond to a 
match pattern. 

Output of the M register feeds one in- 
put of an XOR (exclusive-OR) gate, with 
the other input being the output of the 
XOR in the PE directly above, thus form- 
ing a chain of XOR gates that connects all 
PES. The XOR chain has two functions: 
to enumerate the active responders and 
quickly count responders. 

In addition to the shift register, a re- 
configurable bus (Rbus) lets the PES be 
connected as arbitrary contiguous seg- 
ments. For operations such as a parallel- 
prefix add, a more significant perfor- 

mance gain can be realized through the 
Rbus, which is more effective for long- 
distance communication between PES 
than for simple shifts of data. Communi- 
cation on the Rbus is unidirectional and 
occurs in either a downward or upward 
direction. Each segment starts at a broad- 
casting PE  and continues to the next 
broadcasting PE, where the S register 
controls the connectivity, as shown in Fig- 
ure 3c. It is important to note that Figure 
3c is a logical, not physical, representa- 
tion of the design. 

Instruction set. The instruction set al- 
lows the simultaneous execution of three 
different operation types - array, shift, 
and ALU. Within each PE, the read, 
write, and match instructions control the 
operation of the CAM word. At the lo- 
cations activated by the word-select lines, 
read returns data and write modifies the 
contents of the CAM array. The data reg- 
ister stores data that is written, and the 
mask register’s contents determine the 
bit columns to be modified. The match 
instruction determines those locations in 
the CAM array that match the value in 
the data register. The bit columns to be 
searched are specified by the mask regis- 
ter: therefore, individual bits or subfields 
within the array can be isolated for a 
search. The shift and ALU operations 
control the S register and the ALU out- 
puts, respectively. The shift operation re- 
sults in an unconditional change of the S 
register in all PES. 

Programming model. The program- 
ming model typically employed in  fully 
parallel associative architectures is often 
called data parallel and is the same as 
that found on many of the bit-serial mas- 
sively parallel machines such as the 
DAP, Thinking Machine’s Connection 
Machine CM-1, and the MasPar MP-1. 
In the data-parallel model, there is a 
copy of each parallel variable in every 
PE within the array: thus, if a machine 
contains 8,192 PES, there will be 8,192 
copies of each parallel variable. In fully 
parallel VLSI implementations of CAM, 
however, the length of the CAM word 
can be a limiting factor. While a single 
CAM word appears to be adequate for 
image processing tasks,”.“’ CAM word 
length severely limits most other kinds 
of processing that require more PE 
memory. In these instances, a logical-to- 
physical mapping is necessary to allocate 
a set of PEs to each set of variables being 
processed in parallel. 

In the programming model selected for 
the LCS design, a contiguous set of phys- 
ical PES is allocated as a logical PE that 
processes a record. Record refers to a col- 
lection of data-parallel variables to be 
processed by a single logical processor. 
This set of PES, acting as a single proces- 
sor, then processes the data within that 
record. This model is in direct contrast 
with, for example, the C* Connection 
Machine programming language, where 
a single physical PE can support as many 
virtual PES as will fit within available 
memory. In many cases with our LCS 
model, there is a loss of parallelism as 
only one of N physical PES within a logi- 
cal PE performs useful work at any given 
time. Occasionally. however, it is possible 
to exploit parallelism within a record so 
that more than one physical PE per logi- 
cal PE is active. 

The variables within each record consist 
of a contiguous set of bits within a single 
PE. Unlike a conventional computer that 
can use a single address parameter to iden- 
tify and locate a variable, the associative 
processor under our programming model 
requires three parameters: 

the starting bit position of the vari- 

the variable’s length in bits, and 
the offset of the PE containing the 

able with a PE, 

variable. 

The starting bit position is analogous 
to the address in a conventional machine. 
A variable requires a length because 
there are no predetermined lengths for 
variables: a variable can be anywhere 
from 1 bit long to as long as, or longer 
than, the entire CAM word. The offset 
identifies the PE containing this variable 
out of all physical PES that constitute the 
logical record. 

Mapping data onto CAM. The mem- 
ory organization of the logical PE  is a 
two-dimensional array of bits with one 
dimension being the physical PE offset 
and the other being the starting bit posi- 
tion. It is essential therefore to consider 
the alignment relationships between a 
record’s variables when they are mapped 
onto the PES. These relationships deter- 
mine the amount of parallelism that can 
be extracted from the array. The align- 
ment relationships, depicted in Figure 4, 
can be classified as horizontal alignment, 
vertical alignment, no alignment. or ver- 
tical slice. 

Horizontal alignment applies to items 
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Table 1. Execution time of primitive operations. 

Mode 

Name Function Scalar Vector Segmented 

Increment 

Decrement 

Add 

Subtract 

Multiply 

Divide 

Reduce Add 

Scan Add 

Shift 

Compare 

Minimum 
Maximum 

Move Field 

Count 

Enumerate 

Random 

Send Field 

Spread 
Notes: 

7 t f i  + 1.5/??1 

1 + 2ml 
1 + 2 m l  

3 + lg(N)(9 + 2dl + Sm) 

3 + m1(3 + d 1 ~ )  

10 + 2fi + m1(4 + d d  

4 + 21g( N )  

9 + . f ~ +  4m1 

15 +f1+fZ+2ml 

18 + 4fl + 7ml 

17 + 5f1 + 5ml 

m, length, in bits, of operand f, distance between operand x ,  and start of record 
d, distance between PES holding operands x ,  and xl N number of active PES 

that must be stored in the same PE. For 
example. the destination and source 
operands of a multiply operation should 
be within the same word to minimize in- 
ter-PE communication overhead. Verri- 
cal alignment specifies that two items 
stored in different PES are to be aligned 
so that they both start at the same bit po- 
sition. The conditions of each classifier 
are an example of this relationship; stor- 
ing them in a vertically aligned manner 
means both can be matched simultane- 
ously against messages. Vertical align- 
ment exemplifies parallelism between 
record variables. N o  alignment is suit- 
able for those items that have no inter- 
dependencies and can be placed any- 
where within the allocated PES. A 
vertical slice is a single-bit column that 
extends the entire length of the PE ar- 
ray and is an exception to the program- 
ming model introduced above since it 
consumes a bit at every PE. Vertical 
slices typically provide storage for main- 

tenance purposes or for temporary stor- 
age of a PE's register contents. A verti- 
cal slice can also hold data that is pro- 
cessed in a bit-parallel manner by all the 
ALUs. 

Associative primitives. Implementing 
the LCS algorithms requires a core set of 
arithmetic. logic, and communication 
primitives. These algorithms are inher- 
ently bit serial, since the PE is only a sin- 
gle bit wide. Consequently, operations 
can take many more computation cycles 
to complete than with bit-parallel algo- 
rithms. However. since many operations 
are performed simultaneously, the in- 
crease in cycles is amortized over the to- 
tal number of results generated. giving a 
superior throughput. This does assume 
that the parallelism is great enough to 
sufficiently amortize the cost. Further- 
more. since the architecture lets operands 
be any length. efficiency gains are often 
achieved at the expense of precision. 

which suits our purposes in the model. 
Table 1 lists the primitive operations 

used by the LCS algorithms, and Table 2 
describes the higher-level primitives. 
Each column of Table 1 shows the exe- 
cution time in machine cycles, for each 
of three possible execution modes. The 
scalar mode applies when the controller 
broadcasts a scalar value to the active set 
of PES. Vector mode occurs when all 
operands are contained within the PE ar- 
ray. Segrnenfed mode supports the exe- 
cution of segmented scans and reduction 
primitives" as well as long-range com- 
munication via the Rbus. 

As is evident in Table 1, some of the 
operations (for example, scan add in seg- 
mented mode) were not implemented, 
primarily because the LCS algorithms did 
not require them. The architecture, how- 
ever, has no limitations that would pro- 
hibit the rest of the operations from being 
developed. 

Execution time parameters have two 
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Table 2. Higher-level associative primitives. 

Name Description 

Count 

Enumerate 

Random 

Send Field 

Spread 

Segmented 
Minimum 

Scan Add 

Using the XOR logic, assemble a count of the number of active PES. 

Assign consecutive numbers to the active PES via the XOR logic. 

Generate a random number in each active PE, via a one-dimensional cellular automata 
algorithm. 

An Rbus communication primitive to transmit fields between specially marked PES. 
Restricted to transmitting between nonoverlapping pairs of PES due to the nature of the 
single-wire bus connection between PES. 

A segmented broadcast from one P E  to a set of physically adjacent PES as controlled by 
a bit vector that establishes how the array is broken into segments. 

Find the minimum value in each segment of the array, where the segmentation is con- 
trolled by a bit vector contained in one of the P E  registers. 

Tabulate a running sum over all the currently active PES. Scan Add uses the Enumerate 
primitive to control the connectivity on the Rbus. 

dimensions: m, represents the length of 
operand i ,  and d,, represents the distance 
between the PES containing operands i 
and j .  As an example, consider an add in- 
struction that adds two variables and 
stores the result in the first variable. If 
these two variables are located on differ- 
ent PES, the contents of the second vari- 
able must be bit-serially shifted to the 
first as the add progresses. Thus, if the 
operands are m bits long, m x d cycles 
will then be required in addition to the 
four cycles needed to read the operand 
bits, calculate the new data and carry bits, 
and update the CAM word. The addi- 
tional 7 + d cycles are mainly “cleanup” 
code for overflow and underflow cases. 

Associative imple- 
mentation of LCS 

All three LCS layers were imple- 
mented with the primitive operations just 
described. Next. we examine the map- 
ping of program data structures onto the 
CAM and how the primitive operations 
were applied. 

CAM data structure. Our  LCS con- 
tains two primary data structures: the 
message list and the classifier list. There 
are three ways to map them onto the as- 
sociative processor - store messages in 
the PE array (message-parallel). store 
classifiers in the PE array (classifier-par- 
allel), or store both in the P E  array 

(jointly parallel). This specific LCS im- 
plementation is based on the classifier- 
parallel approach for two reasons: (1) it 
minimizes transferring messages between 
the array and the controller, and (2) tech- 
nology already exists to support 1,000 to 
10,000 classifiers in a design that could be 
easily adapted for a desktop PC applica- 
tion, as explained by Stormon at the Syra- 
cuse University workshop in 1992. 

Record size considerations. In addition 
to conditions, action, strength, and speci- 
ficity, each classifier requires a number of 

flags and temporary storage; all the vari- 
ables that compose a classifier are allo- 
cated to a single record. To attain the ap- 
proximately 280 bits of memory required 
by a classifier record, a minimum of five 
PES (320 bits) must be allocated per 
record. Figure 5 shows the memory map 
for the classifier record that was used for 
the simulation experiments. The mini- 
mum number of PES has been allocated 
to each record to maximize the number of 
classifiers that can be supported. 

Figure 5 identifies the record variables 
that are statically defined for the dura- 

Processor array Layout of a classifier record 

- Classifier - if.- 
N P E ~  
per record - Record 1 - 

0 .- 0 5;‘ 0 16 32 

t Record mark 

Number of bits 

Random cellular aulomata 

-L 
Classifier 
Record 2 

Classifier 
Record 3 

Classifier 
Record N 

0 Statically allocated (permanenl) 

Figure 5. Memory map layout of the static variables in the processing elements. 
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tion of the program. Note that conditions 
1 and 2 are vertically aligned to speed up 
message matching. since both can be 
compared simultaneously. Remaining 
space is allocated for temporary storage 
as needed. The first bit of all five PES is 
the record mark that identifies the start 
of each record. Next to the record mark 
are the action, conditions, and strength. 
The first PE has a message identification 
variable that is reserved for linking clas- 
sifiers with the messages they posted. 
The last bit of each PE holds the state of 
a cellular automaton that generates ran- 
dom numbers. 

Condition and action representation. 
The fully parallel associative architecture, 
due to its capability to selectively mask 
search bits, has the ability to store a don’t 
care (#).The don’t care will match either 
a one or a zero in the search pattern. This 
is particularly useful for representing the 
conditions and action of a classifier, 
which use the # symbol in just that man- 
ner. Each condition and action symbol 
uses two CAM bits, where a 0 = 01,1= I O  
and # = 11. The search patterns are #1 for 
a zero and 1# for a one: Both of these 
match the 11 used to represent the # in 
conditions and action, as well as their re- 
spective symbol. 

The production system layer. The core 
processing loop within the LCS is the 
five-step match-select-act process listed 
in Table 3: (1) match classifiers, (2) create 
messages. (3) post new messages, (4) ex- 
tract messages, and (5) process effectors. 
The continual repetition of these five 
steps constitutes the largest portion of the 
computational effort. Note that this pro- 
cessing loop differs in two respects from 

the earlier processing loop description: 
(1) the add detector messages step has 
been disregarded since this doesn’t in- 
volve the array, and (2) the order of the 
create message and post message steps 
has been reversed to simplify the parallel 
implementation. 

Match classifiers. A special-purpose as- 
sociative architecture was selected for the 
LCS largely due to the matching require- 
ments of the match classifier step. The 
CAM-based design reduces the runtime 
of this step virtually to a constant, re- 
gardless of the number of classifiers. 
Moreover, the associative organization 
means that match status can be main- 
tained without pointers or intermediate 
structures. Unlike associative processing, 
sequential processing would, in order to 
reduce runtime, need to establish a linked 
list of candidate classifiers, each with its 
own list of matching messages. The asso- 
ciative architecture avoids this situation 
by using status flags that can be matched 
in parallel or, since the match cost is very 
low, by reprocessing the message list. Our 
LCS features both techniques. 

The message list is processed in two 
passes. In the first. all candidate classi- 
fiers are determined. During the second 
pass, a copy of the matching message is 
stored at each candidate classifier and 
marked as “used.” Each candidate clas- 
sifier matching an internal message - 
one posted by a classifier on the previous 
cycle -has a match count incremented. 
The message stored with the candidate clas- 
sifiers is used for the create messages step. 
and the credit assignment layer later uses 
this match count to determine strength- 
payments distribution to classifiers active 
in the previous time-step. 

Table 3. Core processing loop in the production system layer. 

Create messages. The action compo- 
nent of each classifier is the template for 
new-message construction. Recall that the 
symbols in the action are from the set: (0, 
1, #).The 0 , l  is copied directly to the new 
message, whereas the # is a “pass-thru” 
token that accepts the corresponding bit 
from a matching message. This algo- 
rithm is similar to a field-move operation, 
except that it conditionally copies bits 
from the source field. As  implemented, 
new-message creation moves only Os and 
1s from the action variable to the message 
variable containing the message stored 
during the match step. The #’s found in 
the action are not copied into the message 
variable, which lets the matching message 
define the new message at these bits. 

Post new messages. The message list is a 
constrained resource in the system as it 
has space enough for only a limited num- 
ber of messages. Furthermore, there is a 
limit to the number of each message type 
permitted on the list. Consequently, the 
primary task of message posting is to count 
the number of new messages. If there are 
too many of the given type, then the sys- 
tem runs a competition to determine those 
that will actually be posted. Another task 
performed during this step is bid calcula- 
tion for each prospective message. The bid 
is used to bias the competition and is 
stored with each message for reference by 
the bucket brigade algorithm. Typically, 
the bid is a function of strength and speci- 
ficity; in our LCS implementation it is 
strength times specificity. 

The competition operation conducts a 
parallelized random selection by first per- 
forming a scan-add of the bids and, for 
each message to be selected, generating a 
random number between zero and the 

Name Description 

1 Match classifiers Each message is matched against all classifier conditions. 
Each classifier with all conditions matched becomes active. 

Each active classifier, based on its actions and a matching message, creates a new 
candidate message for posting to the message list. 

If required, a competition is run 1,) see which messages are posted to the message 
list; if not. all messages are posted to the message list. 

Messages to be posted are read from the array and loaded into the message list in 
controller memory. A tag is associated with each classifier/message pair for use in 
the credit assignment layer. 

The message list is processed by the effectors, and messages are consumed by any 
effector that they match. 

2 Create messages 

3 Post new messages 

4 Extract messages 

5 Process effectors 



sum of all the bids. Each random probe 
searches the array to find the classifiers 
whose bid is greater than that probe. The 
MRR then selects the topmost classifier 
as the winner for this step. 

Extract messages. Message extraction 
requires three passes through all new 
messages. The first pass assigns each mes- 
sage and its generating classifier a tag that 
links them together for the bucket 
brigade algorithm in the credit assign- 
ment layer. Each message identifies its 
generating classifier from the tag via a 
single match instruction. The  8-bit tag 
variable is incremented whenever a mes- 
sage is generated, with the assumption 
that fewer than 128 messages are created 
during each cycle of the production sys- 
tem layer. The remaining passes read the 
messages and bids, then insert them in 
the message list. 

Process effectors. Effector processing 
is an inherently sequential operation that 
loops through the message list to see if 
any messages satisfy an effector. If so. 
that effector performs its function. and 
the respective message is removed from 
the list. 

The credit assignment layer. The 
bucket brigade algorithm is the sole func- 
tion performed by this layer, and its op- 
eration is driven by the contents of the 
message list. Each message specifies a 
transfer of strength to the classifier that 
posted the message from the classifiers it 
matched. Also at this time, the bid is de- 
ducted from the classifier that generated 
the message. 

First, each classifier calculates a pay- 
ment value; this is the bid divided by the 
number of internal messages it matched, 
because an equal share of the bid is paid 
to each message-generating classifier. 
Next. each internally generated message 
is processed sequentially. The message is 
first matched against the active classifiers 
to find those from which a payment is to 
be collected. Next. a reduce-add primi- 
tive calculates the total payment owed to 
the classifier that generated the message. 
Finally, the classifiers are searched again. 
this time with the message tag. to locate 
the generating classifier and store the 
payment it has received. After all mes- 
sages are processed, all classifiers receiv- 
ing a payment from a message have their 
strengths simultaneously updated with 
an add-vector variable primitive. 

The associative search function of the 

array simplifies the execution of this al- 
gorithm by allowing a low overhead 
mechanism to quickly identify links be- 
tween messages and classifiers. A se- 
quential machine, on the other hand, 
would have to maintain a number of lists 
that link classifiers with messages and 
messages with their posting classifiers. 

Classifier discovery layer. The classi- 
fier discovery layer is the most complex 
of the three LCS layers and uses a genetic 
algorithm as the discovery heuristic. 
There are nine steps involved that make 
heavy use of the communication bus as 
well as numerous other processor capa- 
bilities. It is worth noting here that our 
LCS implementation replaces the stan- 
dard genetic algorithm with a parallel 

Parallel genetic 
algorithms build 

a model that more 
closely resembles 

natural evolution by 
introducing the concept 

of spatial locality. 

GA.'? Parallel GAS employ the charac- 
teristics of parallel computers to build a 
model that more closely resembles natu- 
ral evolution by introducing the concept 
of spatial locality. The standard GA se- 
lects parents and replacements from the 
entire pool of strings without any bias 
other than the weighted selection pro- 
cess. This is not, however. a realistic 
model of how evolution actually occurs. 
In reality, parents are most likely to re- 
side within close proximity of one an- 
other. By limiting the distance between 
parents and the string their offspring will 
replace, a parallel computer becomes the 
logical choice to implement the parallel 
GA because of greatly reduced commu- 
nication costs inherent in the architec- 
ture. Moreover. algorithm processing 
improves twofold. First. as expected, par- 
allel processing increases the algorithm's 
execution speed. Second, a more subtle 
improvement results from the spatial re- 
lationships between the population mem- 
bers. which has the effect of allowing 
small pockets of the population to evolve 

somewhat independently from the rest. 
Consequently, as each subpopulation 
searches a different area of the solution 
space, a larger area of the solution space 
is searched simultaneously. 

Mark eligibleparents. This step globally 
scarches various classifier tags and nu- 
meric values to mark those classifiers that 
can be considered as potential parents. 

Calculate fitness. A biased version of 
strength, called fitness, is used during par- 
ent selection. The bias increases the 
chance that those classifiers with higher 
strength will be selected. Fitness is nor- 
mally calculated by raising strength to a 
prespecified power. These LCS simula- 
tions, however, simply set fitness equal 
to strength. 

Select parents. The same parallelized 
random selection algorithm that was used 
in the competition to post messages is ap- 
plied to parent selection, with the excep- 
tion that the algorithm is now based on 
the fitness value just calculated. The 
number of parents selected is twice the 
number of classifiers to be generated, 
which is a fixed percentage of the total 
number of classifiers. 

Implicit in a sequential genetic algo- 
rithm is the grouping of parents together 
for applying the crossover operator. In a 
fine-grained parallel genetic algorithm, 
this is problematic as it introduces the 
need for the classifiers to establish pair- 
wise groupings. One parent of each group 
must then send a copy of its conditions, 
actions, and strength to its "mate." How- 
ever, the reconfigurable capability of the 
Rbus suggests a method of grouping par- 
ents that maximizes bus utilization and is 
computationally less demanding. All par- 
ents are labeled as either even or odd de- 
pending on their location in the array, 
with the topmost parent being even. Each 
even parent is grouped with the odd par- 
ent immediately below it. Grouping the 
parents in this fashion is important as it 
splits the array into spatially disjoint seg- 
ments that can make use of the Rbus 
without contention. Thus, all "even" par- 
ents can simultaneously broadcast to 
their "odd" mates via the Rbus, using the 
send-field primitive. 

Send parents. Offspring generation by 
means of the crossover operator requires 
the conditions, actions. and strengths of 
the two classifiers. The send-field primi- 
tive supports this communication based 
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Figure 6. Letter sequence prediction problem domain. 

on the parent grouping just described. In 
order to minimize communication time 
during offspring generation, vertical 
alignment is set up between the respec- 
tive classifier components that will be- 
come offspring after the following step 
(create offspring). All even parents are 
then disabled; further processing occurs 
at the odd parent. 

Create offspring. Offspring creation 
proceeds by first applying the crossover 
operator on selected parents at the odd 
mate location and then applying the mu- 
tation operator on the offspring thus gen- 
erated. Both steps extensively use ran- 
dom number generation to determine the 
outcome of many decisions that are part 
of these steps. Decisions include deter- 
mining 

which offspring are to be created by 
crossover as opposed to just copying, 
crossover point locations, 
the type of crossover to perform, and 
the number and location of mutations. 

Crossover is similar to message cre- 
ation since one variable is being condi- 
tionally copied into another (that is, the 
odd parent into the new offspring). The 
copy state, initially set to “no copy,” con- 
trols the conditional copying of the odd 
parent. Crossover proceeds bit by bit 
through the entire classifier. The copy 
state is updated prior to the generation of 
each bit of the offspring, such that all PES 
whose first crossover point matches the 
current bit set their copy state to “copy.” 
All PES whose second crossover point 
matches the current bit set their copy state 
to “no copy.” Thus, for the range of bits 
between the two crossover points, the off- 
spring originates from the odd parent. 

Mutation changes up to three bits in 
each offspring, and for each one of these 
possible mutations it maintains a mutua- 
tion position variable and a mutation- 
active flag. Like crossover, mutation pro- 
ceeds bit by bit over the entire classifier, 
but now, when the current bit matches a 
mutation position in a classifier that has 
the respective mutation-active flag set, 

Table 4. Average number of active processing elements per call by primitive operation. 

that classifier undergoes a mutation at 
this bit position. 

The final step of creating the offspring 
is to calculate the new strength for the 
offspring. In this implementation, an av- 
erage of the parent strengths is applied. 

Duplication check. There is nothing to 
prevent the offspring generation step 
from producing many identical classifiers. 
In particular. high-strength classifiers 
have a tendency to reproduce rapidly, 
quickly dominating the entire set of clas- 
sifiers and degrading system perfor- 
mance. A duplication check limits the 
number of duplicates by reading each off- 
spring from the array and comparing it  
with the current classifier list. If the num- 
ber of responders is greater than permit- 
ted, the offspring is eliminated. 

Select replacements. Replacement se- 
lection relies on the segmented minimum 
primitive to build a local neighborhood 
around each offspring. From this neigh- 
borhood, a classifier is selected that will 
be replaced by the offspring. The size of 
the neighborhood, N ,  is typically a small 
integer. In our LCS simulations it was 
three. 

Use of the segmented primitives re- 
quires that the segment boundaries be set 
up beforehand. Segment boundaries are 
created with a two-step process in which 
first the high, and then the low, segment 
boundaries are propagated outward from 
each offspring. Taken together, the up- 
per and lower segment bounds demar- 
cate the neighborhood of the offspring 
from which the replacement will be se- 
lected. If two offspring are within N 
of each other, their neighborhoods are 

Avg. Percent Number of classifiers 
Primitive cycles total 200 400 600 800 1,000 1,200 
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merged and one of the two will be dis- 
carded, depending on the location of the 
replacement. If the two offspring are 
within 2N. but further than N ,  then the 
lower bound of the topmost bound is 
shortened so it doesn’t overlap that of the 
second. The segmented minimum primi- 
tive then selects the lowest strength clas- 
sifier within each segment. which is then 
marked for replacement. 

Send offspring. Following the replace- 
ments selection, the spread primitive broad- 
casts the offspring to the replacement. 

Calculate specificity. The specificity for 
the offspring is calculated at its new lo- 
cation to minimize communication costs. 
Since specificity is just a count of the 
number of 0s and Is in the conditions and 
actions of the offspring, the desired re- 
sult is obtained by performing bit-by-bit 
compares and incrementing the speci- 
ficity variable for each. 

Performance 
evaluation 

An associative architecture simulator 
was developed on a MasPar MP-1 system 
that consisted of 8.192 4-bit processors. 
The simulator served as a highly 
instrumented testbed on which the per- 
formance of various algorithms was in- 
vestigated. Additionally, the use of the 
MP-1 parallel computer with an architec- 
ture closely matched to that of the simu- 
lated machine proved highly effective in 
reducing the runtime of the simulations. 

The LCS algorithms were exercised 
on this simulator and tested on a letter 
prediction problem. In this problem, the 
LCS detectors were a sliding window 
over a continually repeated sequence of 
letters, and the desired output of the 
LCS was a prediction of the next letter 
to become visible in the window, as 
shown in Figure 6. This was a difficult 
problem as the system had no  knowl- 
edge of the problem domain t o  begin 
with. and had no meanings associated 
with its detector inputs or  effector out- 
puts. From a qualitative reinforcement 
signal that merely indicated ‘*right” or 
“wrong.” the LCS had to create a set of 
prediction rules. 

Many simulations, which varied the 
number of classifiers from 200 to 1,200, 
were performed to test the effect on exe- 
cution time. The number of processing el- 
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ements involved was five times the num- 
ber of classifiers, or from 1 .000 to 6.000. 
Figure 7 shows the total number of ma- 
chine cycles required to complete a simu- 
lation run of 4,000 cycles. In general, ex- 
ecution time increased slightly with 
respect to the number of classifiers. The 
total number of cycles that were at- 
tributed to each layer is also shown in Fig- 
ure 7 .  As expected. the production sys- 
tem layer accounted for most of the 
cycles. It is interesting to note that the 

Arithmetic operations 
accounted for most of 
the execution cycles. 

Communication 
operations accounted 

for very few. 

classifier discovery layer, while not in- 
voked at every cycle, was still responsible 
for the next largest block of cycles and 
that it grew with the number of classifiers. 
Consequently, the increase in total exe- 
cution time was due to the classifier dis- 
covery layer. 

In all simulations, primitive operations 
accounted for approximately 78 percent 
of the total number of cycles. In particu- 
lar, it is important to know the degree of 
parallelism exercised within each of the 
primitives. Table 4 shows the ten primi- 
tives that consumed the most cycles. 
sorted in descending order by the per- 
cent of the total number of execution cy- 
cles they contributed. Next to each prim- 

itive is shown the average number of cy- 
cles executed per call; the percent of the 
total number of cycles; and, for a range of 
different numbers of classifiers, the av- 
erage number of active PES per call. 
From this table, it can be concluded that 
the arithmetic operations were directly 
responsible for the largest portion of the 
total number of execution cycles. Fur- 
thermore, it is also clear that the com- 
munication operations comprised an in- 
significant portion of the total number 
of cycles. The data for the random prim- 
itive is left out as that primitive was 
coded to generate a random number in 
all classifier records. 

An important concern was whether 
there were enough active PES to justify the 
use of bit-serial algorithms, or whether 
the work should have been performed se- 
quentially in the controller with bit-par- 
allel hardware. Those primitives where 
the average number of active PES was less 
than the average number of cycles are 
multiply- vector, scan add, and add-vector. 
By moving these operations to the con- 
troller, approximately 12 percent of all cy- 
cles were eliminated. However, since the 
number of active PES often varied greatly 
between individual calls, it was important 
to preface each routine with a test of the 
number of active PES to determine where 
to perform the calculation. 

lthough this article focused 
on a single type of encoding for 
the classifiers, the architecture, 

while highly specialized, is quite capable 
of easily supporting any number of ge- 
netic algorithm encodings. This is due to 
the very flexible way in which the CAM 
data can be processed. Furthermore. the 
architecture will enable the development 
of many different algorithms for both the 
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credit assignment and classifier discov- 
ery layers, in conjunction with new re- 
search results on LCSs. 

The work reported here shows that as- 
sociative architectures with the correct com- 
munication support, such as a reconfig- 
urable long-distance communication bus, 
are effective for building Learning Classifer 
Systems. In particular, the experimental 
data showed that the runtime of the system 
increased only slightly even as the number 
of classifiers was increased sixfold. 

Research to  date has investigated the 
development of a specialized associative 
architecture t o  support inductive rule- 
based machine learning with genetic al- 
gorithms. Future development of intelli- 
gent systems with broad-based machine 
learning and adaptive capabilities may 
benefit directly from such specialized ar- 
chitectures. These architectures offer 
valuable potential for achieving a high 
degree of reactivity to  inputs from the en- 
vironment. In particular, as is possible 
with this architecture, it is important that 
ever-larger knowledge bases be sup- 
ported in a manner that does not signifi- 
cantly affect runtime. 
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