
An Associative
Architecture for Genetic
Algorithm-Based Machine
T 0 Learning
Kirk Twardowski, Loral Federal Systems - Owego

Machine-based
learning will

eventually be applied
to solve real-world
problems. Here, an

associative
architecture teams

with hybrid AI
algorithms to solve a

letter prediction
problem with

promising results.
November 1994

ystems architects have continually sought to design machines with ever-
greater levels of human-like autonomy and intelligence. It is widely recog-
nized that the potential for such machines is nearly limitless, as evidenced by

recent achievements involving autonomous agents, database mining. speech pro-
cessing and translation. adaptive vision systems, visualization systems and anima-
tion. The results promise radical change in how we will eventually interact with our
computers. Currently available systems, of course, are far from attaining real-world
performance in such areas. largely due to a lack of computational power.

Researchers of massively parallel artificial intelligence seek to capitalize on ad-
vances in computer architecture to develop novel AI techniques that fully exploit the
parallel capabilities of such powerful machines. The combination of AI and mas-
sively parallel computing will couple sophisticated knowledge-processing models
with vast computational resources, which has the potential to eliminate the compu-
tational bottleneck that now prevents many AI systems from offering practical solu-
tions to real-world problems.

This article describes an investigation and simulation of a massively parallel Learn-
ing Classifier System (LCS) that was developed from a specialized associative archi-
tecture joined with hybrid AI algorithms. The LCS algorithms were specifically in-
vented to computationally match a massively parallel computer architecture, which
was a special-purpose design to support the inferencing and learning components of the
LCS. The LCS's computationally intensive functions include rule matching. parent se-
lection. replacement selection, and, to a lesser degree, data structure manipulation.

Learning Classifier Systems
Learning Classifier Systems, introduced by Holland', are general-purpose ma-

chine learning systems designed to operate in uncertain. noisy environments that
provide infrequent and often incomplete feedback. An example of such an environ-
ment might be a chemical plant, where an LCS would perform process control. An
LCS comprises three layers: a parallel production system. a credit assignment algo-
rithm, and classifier discovery algorithms. The production system models the prob-
lem domain as clusters of highly standardized rules called dassifiers, and it provides

i W l K 416294 %JOi~%.1994IEEE 27

a basic match-select-act inferencing cy-
cle with parallel-classifier activation. The
credit assignment algorithm evaluates a
strength for each classifier based on feed-
back from the environment. This strength
serves as a measure of a classifier’s utility
to the LCS and is used both in the infer-
encing process and in the discovery of
classifiers. Classifier discovery algorithms
are typically a combination of genetic al-
gorithms and several heuristic methods.
Together, credit assignment and classi-
fier discovery are the techniques that en-
dow the LCS with its adaptive capability.
which is what enables machine learning
systems to respond to changing condi-
tions in a problem domain.

Rule-based production system. The
LCS production system layer bears many
similarities to rule-based expert systems.
In particular, the production system’s
knowledge is encoded in a set of classi-
fiers processed by a cyclic match-select-
act inferencing algorithm. The primary
difference between the two system types
lies in the production system’s mecha-
nisms for simultaneous classifier activa-
tion, which makes it a parallel-classifier-
based system. On the other hand. expert
systems are sequential in nature, permit-
ting only one rule to be processed at a

Glossary

I -

Message Classifier
list

discovery

Figure 1. Block
diagram of the

Learning Classifier
System compo-

nents. The
screened compo-

nents compose the

system production layer. I

time. Short-term working memory is
maintained on a global message lisr that
stores internally generated messages as
well as input and output environment
communication messages. A set of de-
tectors and effectors provides the mes-
sage-based interface to the environment.
An example of a detector is a tempera-
ture sensor. whereas an example of an ef-
fector is a robotic arm or a valve.

Each classifier has a simple I F con&
tion(s), THEI\I action syntax (for example.
IF temperature is greater than loo”, THEN

open valve). Conditions and actions are
fixed-length strings and are typically
identical in length for all classifiers. The

Bias - Many of the decisions made in the Learning Classi-
fier System are of a stochastic nature. They are controlled by
the bias, which is a numeric value stored with each individual
classifier in the LCS.
Bid - A fractional amount of strength paid by a classifier for
the right to post a message that is used in the bucket brigade
algorithm.
Classifier - A basic component of knowledge representa-
tion in an LCS that is analogous to a rule in expert or produc-
tion systems.
Classifier discovery - That part of the system that uses
heuristics, most notably the genetic algorithm, to explore
new concepts by creating new classifiers.
Competition - A process, which is based on a classifier’s
strength, that decides which classifiers are granted access to
limited system resources (that is, the message list).
Crossover - A basic operator in the genetic algorithm that
generates a new classifier from subsections of parent classi-
fiers.
Detectors - Sensors that translate environment conditions
into the messages processed by the LCS.
Effectors - Environment manipulators used by the LCS to
perform actions.
Fitness - A relative measure of a classifier’s utility to the
LCS in solving a given problem.

symbol alphabet used to compose both
the condition and action strings is (0,l. #).
The # symbol represents a don’t-care
character that can match either 0 or 1.
Messages are identical in structure to
conditions and actions, except they con-
tain no # symbols.

An LCS production system. therefore,
consists of a classifier list, a message list.
a set of detectors. a set of effectors, and a
feedback mechanism (see Figure 1). Also
shown are the credit assignment and clas-
sifier discovery components (layers). The
basic execution loop governing the inter-
actions between these components con-
sists of six steps in a single execution cycle:

Genetic algorithm - A search-and-optimization algorithm
based on the mechanics of biological evolution.
Payment -The strength value transferred between two
classifiers within the bucket brigade algorithm. Payment is
made to the classifier that generated a message from the
classifier that matches the message.
Payoff - The scalar reinforcement value received from the
environment as a form of reward or punishment.
Spatial locality - The physical distribution of classifiers
within the array of processing elements where parents and
replacement classifiers are selected such that they are phys-
ically colocated.
Specificity -A measure of the number of different mes-
sages that can match a classifier. A classifier can match from
one to hundreds of messages that are either internally gener-
ated by the LCS or issued from the environment. Classifiers
that are very general match many messages and therefore
handle default conditions. Classifiers that are very specific
match few messages and therefore handle special cases in
the environment.
Strength - Numeric estimate of fitness that controls many
aspects of a classifier’s behavior in the LCS, that is, in the
competition to post new messages and its probability of
being selected as a parent or a replacement.

Classifier list

###1 1100 010#
1010 #0#1 ###1

I

Figure 2. Example of a genetic algorithm cycle.

(1) any messages from the environment
detectors are added to the current mes-
sage list, (2) the contents of the message
list are matched against all the conditions
of all the classifiers, (3) those classifiers
whose conditions were matched compete
for the right to post messages to the mes-
sage list such that those with greater
strength are favored to win. (4) the win-
ners of the competition create new mes-
sages based upon their actions and the
matching messages, (5) the new messages
are added to the message list, and (6) the
effectors perform any actions specified in
the message list.

Credit assignment. Credit assignment
has long been recognized as a difficult
problem inherent in any learning system
composed of many interacting compo-
nents (for example, classifiers) that con-
tribute, over time, to the overall perfor-
mance. The purpose of credit assignment
in an LCS is to distribute feedback from
the environment in the form of a scalar
reinforcement value such that beneficial
classifiers are rewarded and detrimental
classifiers are penalized with respect to
the desired outcomes.

Holland’s’ proposed bucket brigade al-
gorithm is a mechanism that can poten-
tially solve the credit assignment problem
in an LCS. The objective of the bucket
brigade algorithm is to distribute payoffs
received from the environment to the
appropriate classifiers in the form of
strength adjustments. When the environ-
ment determines that the LCS has acted
in a beneficial way (for example, correctly
regulates temperature in controlling a
process), it rewards (pays off) the system
in terms of added strength. Conversely. if
the LCS has acted in a harmful way,
the environment penalizes it by taking
strength away. This is important because
these adjustments shape the adaptive
(learning) ability of the LCS: Classifiers

whose strength has been increased are
more likely to be selected when a similar
problem next needs to be solved, while
those whose strength has been diminished
are less likely to be selected.

As the term bucket brigade implies,
strength is taken in small quantities from
those classifiers that lead directly to pay-
off (active when payoff is received) and
given to those classifiers that lead indi-
rectly to payoff (“stage-setting” classi-
fiers). Conceptually, the bucket brigade
algorithm operates on chains of classi-
fiers in which strength is being passed
backward from the payoff-receiving clas-
sifier to previously active classifiers. The
algorithm consists of two steps for each
posting classifier: (1) reduce the classi-
fier’s strength by an amount equal to a
fraction (approximately 1/10) of its
strength, and (2) distribute this amount
among classifiers that generated, in the
previous time-step, the messages that sat-
isfied this classifier. Classifiers posting ef-
fector-actuating messages when payoff is
received share the payoff amount, and
have their strengths updated accordingly.

Classifier discovery algorithms. While
the bucket brigade is an effective mech-
anism for the temporal aspects of credit
assignment, it cannot modify the system’s
knowledge structure. The ability to mod-
ify the system‘s internal knowledge struc-
tures is crucial for an LCS to learn new
behaviors or adapt to a changing domain.
What is needed is the ability to create
new classifiers and delete those that have
proven to be of little value.

The primary classifier discovery mech-
anism in an LCS is the genetic aLgo-
rithm,2 which is why a simplistic string
representation is used for classifiers. The
genetic algorithm is a heuristic search
procedure modeled on natural evolution
in an attempt to capture evolution’s
adaptive and optimizing features in a

practical algorithmic form.
In an LCS, the genetic algorithm is pe-

riodically invoked to create new classi-
fiers. The algorithm’s basic execution
cycle is:

(1) from the classifier list, randomly se-
lect pairs of parent classifiers such
that higher-strength classifiers have
a greater chance of selection,

(2) create new classifiers by applying ge-
netic operators to the parents, and

(3) randomly select those classifiers to
be replaced by the newly generated
classifiers such that lower-strength
classifiers have a greater chance of
selection.

In the prototypical genetic algorithm,
there are two genetic operators: crossover
and mutation, which are applied to the se-
lected parent classifiers to create new clas-
sifiers. To form a new classifier, the
crossover operator pieces together sections
from two parents. while the mutation op-
erator, with a very low probability, alters
randomly selected bits within a classifier.

Figure 2 shows a single genetic algo-
rithm cycle that has been applied on clas-
sifiers with two 4-bit conditions. For
emphasis, selection of parent and re-
placement classifiers is shown as a maxi-
mum or minimum function, respectively.
Crossover occurs between the fifth and
sixth bits, while bits 2 and 10 are mutated.

The associative
architecture

There were two key reasons compel-
ling the choice of a specialized associa-
tive architecture: (1) searching occurs fre-
quently during LCS functions (rule
matching, parent selection, replacement
selection. and data structure manipula-
tion), and (2) the independent nature of
the individual classifiers made them well
suited to the SIMD (single instruction,
multiple data) paradigm of associative
computing. For these reasons, we be-
lieved a computationally efficient imple-
mentation was well worth investigation.

T o date, two notable parallel LCSs
include Robertson’s3 *CFS on the Con-
nection Machine and Dorigo’s4 Alecsys.
which runs on an array of transputers. Of
these, T F S is most similar to the ap-
proach described here because it is a
SIMD massively parallel system. Neither
*CFS nor Alecsys, however, incorporates

November 1994 29

Rbus

t
c From PE 1-1 I Control unit I

MRR

B---- Switch
XOR and mask memory

In

L Data Mask1 Instruction1 Rbus
out
4

broadcast +EuJ
f Array of associative PES

I I

Shift
Down b e c e i v e +z,J Match

from
CAM

- I [TI Broadcast ALU
64-bit CAM word]+mi e

(164-bit CAM word] 4 m 9
T

Readiwrite

k e c e i v e +zuJ XOR MRR Rbus Rbus
out Out In out

Someinone Activity
responder status parity

PE - processing element
CAM - content-addressable memory
MRR - multiple response resolver
Rbus - reconfigurable bus
ALU - arithmetic logic unit

XOR - exclusive OR
M - single-bit register that stores results of a search of the attached CAM word
A- holds intermediate results
S - a shift register connected to the PE above and below it
W - enables transfer of word-selects to the attached CAM word

Figure 3. Three views of associative architecture: (a) high-level generalized block diagram; (b) processing element logic dia-
gram showing the four single-bit registers: M stores results of a search of the attached CAM word; Wenables transfer of
word-selects to the attached CAM word; S is a shift register connected to the PE above and below it; and A holds intermedi-
ate results; (c) reconfigurable bus operation.

a parallel G A model as does our imple-
mentation as described later. A parallel
genetic algorithm is important for two
reasons: (1) it extracts as much paral-
lelism from the algorithms as possible,
and (2) it improves system performance
with respect to the number of classifiers.
Accurate execution times are not avail-
able for either system, so a meaningful
performance comparison will not be pos-
sible until further research is conducted.

The architecture is a linear array of
fully associative processing elements
that consist of 64 bits of content-address-
able memory, coupled with a 1-bit row
processor to provide response process-
ing, activity control, multiple response
resolution logic, and inter-PE communi-
cation. Memory and PE size determina-

tion was based on commercially available
CAM chips or on those in development,
as described in the literatures and by
Stormon during the “Associative Pro-
cessing and Applications Workshop”
presented at Syracuse University in 1992.

Figure 3a shows a high-level view of
the architecture. The array of PES oper-
ates in a SIMD mode and therefore has a
controller that is responsible for gener-
ating and broadcasting instructions and
data to the array, as well as accumulat-
ing and testing global feedback informa-
tion. The controller contains a data reg-
ister, which holds the data broadcast to
the array, and a mask register that deter-
mines which bit columns of the array are
active during writes and matches. This ar-
chitecture is an example of traditional,

fully parallel associative processing, and
it provides essential associative comput-
ing capabilities, such as

fully parallel search of all memory,
constant time responderino respon-
der status,
multiple response resolution to select
a single processor from many,

*efficient broadcast of data and in-
structions from controller to array, and
efficient one-to-one data transfer be-
tween processing elements and the
control unit.6

In addition, the architecture provides
an extended communication capability in
the form of a reconfigurable bus similar
to those found in many of the more re-

30 COMPUTER

PE
offset

op*l, 7 e..... j
......... 1

2

3

4

...
....................a...

(A. 6) : Horizontal alignment
(C. D. E) : Veriical alignment

(F) : Vertical slice
(G) : No alignment

Figure 4. Examples of the various align-
ment cases possible when variables are
mapped onto processing elements.

cent VLSI implementations of associa-
tive processor^.^-^

Processing element. Figure 3b is a de-
tailed diagram of the 1-bit processor
within each PE. There are four single-bit
registers used for dedicated functions,
temporary results storage, or both. The
M register stores the results from a search
of the attached CAM word. The W reg-
ister, since it enables the transfer of the
word-selects to the attached CAM word,
effectively controls local activity (that is,
whether the PE executes instructions
broadcast to it). The S register is a shift
register connected to the PE directly
above and below. The A register primar-
ily holds intermediate data. The ALU
(arithmetic logic unit) can calculate any
function of two inputs and can be loaded
into any of the four registers.

The multiple response resolver
(MRR) behaves like a priority circuit. Its
output is a single bit that corresponds to
the topmost active bit in the M register.
The MRR resolves the situation that re-
sults when multiple PES, which need to
be processed individually, respond to a
match pattern.

Output of the M register feeds one in-
put of an XOR (exclusive-OR) gate, with
the other input being the output of the
XOR in the PE directly above, thus form-
ing a chain of XOR gates that connects all
PES. The XOR chain has two functions:
to enumerate the active responders and
quickly count responders.

In addition to the shift register, a re-
configurable bus (Rbus) lets the PES be
connected as arbitrary contiguous seg-
ments. For operations such as a parallel-
prefix add, a more significant perfor-

mance gain can be realized through the
Rbus, which is more effective for long-
distance communication between PES
than for simple shifts of data. Communi-
cation on the Rbus is unidirectional and
occurs in either a downward or upward
direction. Each segment starts at a broad-
casting PE and continues to the next
broadcasting PE, where the S register
controls the connectivity, as shown in Fig-
ure 3c. It is important to note that Figure
3c is a logical, not physical, representa-
tion of the design.

Instruction set. The instruction set al-
lows the simultaneous execution of three
different operation types - array, shift,
and ALU. Within each PE, the read,
write, and match instructions control the
operation of the CAM word. At the lo-
cations activated by the word-select lines,
read returns data and write modifies the
contents of the CAM array. The data reg-
ister stores data that is written, and the
mask register’s contents determine the
bit columns to be modified. The match
instruction determines those locations in
the CAM array that match the value in
the data register. The bit columns to be
searched are specified by the mask regis-
ter: therefore, individual bits or subfields
within the array can be isolated for a
search. The shift and ALU operations
control the S register and the ALU out-
puts, respectively. The shift operation re-
sults in an unconditional change of the S
register in all PES.

Programming model. The program-
ming model typically employed in fully
parallel associative architectures is often
called data parallel and is the same as
that found on many of the bit-serial mas-
sively parallel machines such as the
DAP, Thinking Machine’s Connection
Machine CM-1, and the MasPar MP-1.
In the data-parallel model, there is a
copy of each parallel variable in every
PE within the array: thus, if a machine
contains 8,192 PES, there will be 8,192
copies of each parallel variable. In fully
parallel VLSI implementations of CAM,
however, the length of the CAM word
can be a limiting factor. While a single
CAM word appears to be adequate for
image processing tasks,”.“’ CAM word
length severely limits most other kinds
of processing that require more PE
memory. In these instances, a logical-to-
physical mapping is necessary to allocate
a set of PEs to each set of variables being
processed in parallel.

In the programming model selected for
the LCS design, a contiguous set of phys-
ical PES is allocated as a logical PE that
processes a record. Record refers to a col-
lection of data-parallel variables to be
processed by a single logical processor.
This set of PES, acting as a single proces-
sor, then processes the data within that
record. This model is in direct contrast
with, for example, the C* Connection
Machine programming language, where
a single physical PE can support as many
virtual PES as will fit within available
memory. In many cases with our LCS
model, there is a loss of parallelism as
only one of N physical PES within a logi-
cal PE performs useful work at any given
time. Occasionally. however, it is possible
to exploit parallelism within a record so
that more than one physical PE per logi-
cal PE is active.

The variables within each record consist
of a contiguous set of bits within a single
PE. Unlike a conventional computer that
can use a single address parameter to iden-
tify and locate a variable, the associative
processor under our programming model
requires three parameters:

the starting bit position of the vari-

the variable’s length in bits, and
the offset of the PE containing the

able with a PE,

variable.

The starting bit position is analogous
to the address in a conventional machine.
A variable requires a length because
there are no predetermined lengths for
variables: a variable can be anywhere
from 1 bit long to as long as, or longer
than, the entire CAM word. The offset
identifies the PE containing this variable
out of all physical PES that constitute the
logical record.

Mapping data onto CAM. The mem-
ory organization of the logical PE is a
two-dimensional array of bits with one
dimension being the physical PE offset
and the other being the starting bit posi-
tion. It is essential therefore to consider
the alignment relationships between a
record’s variables when they are mapped
onto the PES. These relationships deter-
mine the amount of parallelism that can
be extracted from the array. The align-
ment relationships, depicted in Figure 4,
can be classified as horizontal alignment,
vertical alignment, no alignment. or ver-
tical slice.

Horizontal alignment applies to items

November 1994 31

Table 1. Execution time of primitive operations.

Mode

Name Function Scalar Vector Segmented

Increment

Decrement

Add

Subtract

Multiply

Divide

Reduce Add

Scan Add

Shift

Compare

Minimum
Maximum

Move Field

Count

Enumerate

Random

Send Field

Spread
Notes:

7 t f i + 1.5/??1

1 + 2ml
1 + 2 m l

3 + lg(N)(9 + 2dl + Sm)

3 + m1(3 + d 1 ~)

10 + 2fi + m1(4 + d d

4 + 21g(N)

9 + . f ~ + 4m1

15 +f1+fZ+2ml

18 + 4fl + 7ml

17 + 5f1 + 5ml

m, length, in bits, of operand f, distance between operand x , and start of record
d, distance between PES holding operands x , and xl N number of active PES

that must be stored in the same PE. For
example. the destination and source
operands of a multiply operation should
be within the same word to minimize in-
ter-PE communication overhead. Verri-
cal alignment specifies that two items
stored in different PES are to be aligned
so that they both start at the same bit po-
sition. The conditions of each classifier
are an example of this relationship; stor-
ing them in a vertically aligned manner
means both can be matched simultane-
ously against messages. Vertical align-
ment exemplifies parallelism between
record variables. N o alignment is suit-
able for those items that have no inter-
dependencies and can be placed any-
where within the allocated PES. A
vertical slice is a single-bit column that
extends the entire length of the PE ar-
ray and is an exception to the program-
ming model introduced above since it
consumes a bit at every PE. Vertical
slices typically provide storage for main-

tenance purposes or for temporary stor-
age of a PE's register contents. A verti-
cal slice can also hold data that is pro-
cessed in a bit-parallel manner by all the
ALUs.

Associative primitives. Implementing
the LCS algorithms requires a core set of
arithmetic. logic, and communication
primitives. These algorithms are inher-
ently bit serial, since the PE is only a sin-
gle bit wide. Consequently, operations
can take many more computation cycles
to complete than with bit-parallel algo-
rithms. However. since many operations
are performed simultaneously, the in-
crease in cycles is amortized over the to-
tal number of results generated. giving a
superior throughput. This does assume
that the parallelism is great enough to
sufficiently amortize the cost. Further-
more. since the architecture lets operands
be any length. efficiency gains are often
achieved at the expense of precision.

which suits our purposes in the model.
Table 1 lists the primitive operations

used by the LCS algorithms, and Table 2
describes the higher-level primitives.
Each column of Table 1 shows the exe-
cution time in machine cycles, for each
of three possible execution modes. The
scalar mode applies when the controller
broadcasts a scalar value to the active set
of PES. Vector mode occurs when all
operands are contained within the PE ar-
ray. Segrnenfed mode supports the exe-
cution of segmented scans and reduction
primitives" as well as long-range com-
munication via the Rbus.

As is evident in Table 1, some of the
operations (for example, scan add in seg-
mented mode) were not implemented,
primarily because the LCS algorithms did
not require them. The architecture, how-
ever, has no limitations that would pro-
hibit the rest of the operations from being
developed.

Execution time parameters have two

32 COMPUTER

Table 2. Higher-level associative primitives.

Name Description

Count

Enumerate

Random

Send Field

Spread

Segmented
Minimum

Scan Add

Using the XOR logic, assemble a count of the number of active PES.

Assign consecutive numbers to the active PES via the XOR logic.

Generate a random number in each active PE, via a one-dimensional cellular automata
algorithm.

An Rbus communication primitive to transmit fields between specially marked PES.
Restricted to transmitting between nonoverlapping pairs of PES due to the nature of the
single-wire bus connection between PES.

A segmented broadcast from one P E to a set of physically adjacent PES as controlled by
a bit vector that establishes how the array is broken into segments.

Find the minimum value in each segment of the array, where the segmentation is con-
trolled by a bit vector contained in one of the P E registers.

Tabulate a running sum over all the currently active PES. Scan Add uses the Enumerate
primitive to control the connectivity on the Rbus.

dimensions: m, represents the length of
operand i , and d,, represents the distance
between the PES containing operands i
and j . As an example, consider an add in-
struction that adds two variables and
stores the result in the first variable. If
these two variables are located on differ-
ent PES, the contents of the second vari-
able must be bit-serially shifted to the
first as the add progresses. Thus, if the
operands are m bits long, m x d cycles
will then be required in addition to the
four cycles needed to read the operand
bits, calculate the new data and carry bits,
and update the CAM word. The addi-
tional 7 + d cycles are mainly “cleanup”
code for overflow and underflow cases.

Associative imple-
mentation of LCS

All three LCS layers were imple-
mented with the primitive operations just
described. Next. we examine the map-
ping of program data structures onto the
CAM and how the primitive operations
were applied.

CAM data structure. Our LCS con-
tains two primary data structures: the
message list and the classifier list. There
are three ways to map them onto the as-
sociative processor - store messages in
the PE array (message-parallel). store
classifiers in the PE array (classifier-par-
allel), or store both in the P E array

(jointly parallel). This specific LCS im-
plementation is based on the classifier-
parallel approach for two reasons: (1) it
minimizes transferring messages between
the array and the controller, and (2) tech-
nology already exists to support 1,000 to
10,000 classifiers in a design that could be
easily adapted for a desktop PC applica-
tion, as explained by Stormon at the Syra-
cuse University workshop in 1992.

Record size considerations. In addition
to conditions, action, strength, and speci-
ficity, each classifier requires a number of

flags and temporary storage; all the vari-
ables that compose a classifier are allo-
cated to a single record. To attain the ap-
proximately 280 bits of memory required
by a classifier record, a minimum of five
PES (320 bits) must be allocated per
record. Figure 5 shows the memory map
for the classifier record that was used for
the simulation experiments. The mini-
mum number of PES has been allocated
to each record to maximize the number of
classifiers that can be supported.

Figure 5 identifies the record variables
that are statically defined for the dura-

Processor array Layout of a classifier record

- Classifier - if.-
N P E ~
per record - Record 1 -

0 .- 0 5;‘ 0 16 32

t Record mark

Number of bits

Random cellular aulomata

-L
Classifier
Record 2

Classifier
Record 3

Classifier
Record N

0 Statically allocated (permanenl)

Figure 5. Memory map layout of the static variables in the processing elements.

November 1Y94 33

tion of the program. Note that conditions
1 and 2 are vertically aligned to speed up
message matching. since both can be
compared simultaneously. Remaining
space is allocated for temporary storage
as needed. The first bit of all five PES is
the record mark that identifies the start
of each record. Next to the record mark
are the action, conditions, and strength.
The first PE has a message identification
variable that is reserved for linking clas-
sifiers with the messages they posted.
The last bit of each PE holds the state of
a cellular automaton that generates ran-
dom numbers.

Condition and action representation.
The fully parallel associative architecture,
due to its capability to selectively mask
search bits, has the ability to store a don’t
care (#).The don’t care will match either
a one or a zero in the search pattern. This
is particularly useful for representing the
conditions and action of a classifier,
which use the # symbol in just that man-
ner. Each condition and action symbol
uses two CAM bits, where a 0 = 01,1= I O
and # = 11. The search patterns are #1 for
a zero and 1# for a one: Both of these
match the 11 used to represent the # in
conditions and action, as well as their re-
spective symbol.

The production system layer. The core
processing loop within the LCS is the
five-step match-select-act process listed
in Table 3: (1) match classifiers, (2) create
messages. (3) post new messages, (4) ex-
tract messages, and (5) process effectors.
The continual repetition of these five
steps constitutes the largest portion of the
computational effort. Note that this pro-
cessing loop differs in two respects from

the earlier processing loop description:
(1) the add detector messages step has
been disregarded since this doesn’t in-
volve the array, and (2) the order of the
create message and post message steps
has been reversed to simplify the parallel
implementation.

Match classifiers. A special-purpose as-
sociative architecture was selected for the
LCS largely due to the matching require-
ments of the match classifier step. The
CAM-based design reduces the runtime
of this step virtually to a constant, re-
gardless of the number of classifiers.
Moreover, the associative organization
means that match status can be main-
tained without pointers or intermediate
structures. Unlike associative processing,
sequential processing would, in order to
reduce runtime, need to establish a linked
list of candidate classifiers, each with its
own list of matching messages. The asso-
ciative architecture avoids this situation
by using status flags that can be matched
in parallel or, since the match cost is very
low, by reprocessing the message list. Our
LCS features both techniques.

The message list is processed in two
passes. In the first. all candidate classi-
fiers are determined. During the second
pass, a copy of the matching message is
stored at each candidate classifier and
marked as “used.” Each candidate clas-
sifier matching an internal message -
one posted by a classifier on the previous
cycle -has a match count incremented.
The message stored with the candidate clas-
sifiers is used for the create messages step.
and the credit assignment layer later uses
this match count to determine strength-
payments distribution to classifiers active
in the previous time-step.

Table 3. Core processing loop in the production system layer.

Create messages. The action compo-
nent of each classifier is the template for
new-message construction. Recall that the
symbols in the action are from the set: (0,
1, #).The 0 , l is copied directly to the new
message, whereas the # is a “pass-thru”
token that accepts the corresponding bit
from a matching message. This algo-
rithm is similar to a field-move operation,
except that it conditionally copies bits
from the source field. As implemented,
new-message creation moves only Os and
1s from the action variable to the message
variable containing the message stored
during the match step. The #’s found in
the action are not copied into the message
variable, which lets the matching message
define the new message at these bits.

Post new messages. The message list is a
constrained resource in the system as it
has space enough for only a limited num-
ber of messages. Furthermore, there is a
limit to the number of each message type
permitted on the list. Consequently, the
primary task of message posting is to count
the number of new messages. If there are
too many of the given type, then the sys-
tem runs a competition to determine those
that will actually be posted. Another task
performed during this step is bid calcula-
tion for each prospective message. The bid
is used to bias the competition and is
stored with each message for reference by
the bucket brigade algorithm. Typically,
the bid is a function of strength and speci-
ficity; in our LCS implementation it is
strength times specificity.

The competition operation conducts a
parallelized random selection by first per-
forming a scan-add of the bids and, for
each message to be selected, generating a
random number between zero and the

Name Description

1 Match classifiers Each message is matched against all classifier conditions.
Each classifier with all conditions matched becomes active.

Each active classifier, based on its actions and a matching message, creates a new
candidate message for posting to the message list.

If required, a competition is run 1,) see which messages are posted to the message
list; if not. all messages are posted to the message list.

Messages to be posted are read from the array and loaded into the message list in
controller memory. A tag is associated with each classifier/message pair for use in
the credit assignment layer.

The message list is processed by the effectors, and messages are consumed by any
effector that they match.

2 Create messages

3 Post new messages

4 Extract messages

5 Process effectors

sum of all the bids. Each random probe
searches the array to find the classifiers
whose bid is greater than that probe. The
MRR then selects the topmost classifier
as the winner for this step.

Extract messages. Message extraction
requires three passes through all new
messages. The first pass assigns each mes-
sage and its generating classifier a tag that
links them together for the bucket
brigade algorithm in the credit assign-
ment layer. Each message identifies its
generating classifier from the tag via a
single match instruction. The 8-bit tag
variable is incremented whenever a mes-
sage is generated, with the assumption
that fewer than 128 messages are created
during each cycle of the production sys-
tem layer. The remaining passes read the
messages and bids, then insert them in
the message list.

Process effectors. Effector processing
is an inherently sequential operation that
loops through the message list to see if
any messages satisfy an effector. If so.
that effector performs its function. and
the respective message is removed from
the list.

The credit assignment layer. The
bucket brigade algorithm is the sole func-
tion performed by this layer, and its op-
eration is driven by the contents of the
message list. Each message specifies a
transfer of strength to the classifier that
posted the message from the classifiers it
matched. Also at this time, the bid is de-
ducted from the classifier that generated
the message.

First, each classifier calculates a pay-
ment value; this is the bid divided by the
number of internal messages it matched,
because an equal share of the bid is paid
to each message-generating classifier.
Next. each internally generated message
is processed sequentially. The message is
first matched against the active classifiers
to find those from which a payment is to
be collected. Next. a reduce-add primi-
tive calculates the total payment owed to
the classifier that generated the message.
Finally, the classifiers are searched again.
this time with the message tag. to locate
the generating classifier and store the
payment it has received. After all mes-
sages are processed, all classifiers receiv-
ing a payment from a message have their
strengths simultaneously updated with
an add-vector variable primitive.

The associative search function of the

array simplifies the execution of this al-
gorithm by allowing a low overhead
mechanism to quickly identify links be-
tween messages and classifiers. A se-
quential machine, on the other hand,
would have to maintain a number of lists
that link classifiers with messages and
messages with their posting classifiers.

Classifier discovery layer. The classi-
fier discovery layer is the most complex
of the three LCS layers and uses a genetic
algorithm as the discovery heuristic.
There are nine steps involved that make
heavy use of the communication bus as
well as numerous other processor capa-
bilities. It is worth noting here that our
LCS implementation replaces the stan-
dard genetic algorithm with a parallel

Parallel genetic
algorithms build

a model that more
closely resembles

natural evolution by
introducing the concept

of spatial locality.

GA.'? Parallel GAS employ the charac-
teristics of parallel computers to build a
model that more closely resembles natu-
ral evolution by introducing the concept
of spatial locality. The standard GA se-
lects parents and replacements from the
entire pool of strings without any bias
other than the weighted selection pro-
cess. This is not, however. a realistic
model of how evolution actually occurs.
In reality, parents are most likely to re-
side within close proximity of one an-
other. By limiting the distance between
parents and the string their offspring will
replace, a parallel computer becomes the
logical choice to implement the parallel
GA because of greatly reduced commu-
nication costs inherent in the architec-
ture. Moreover. algorithm processing
improves twofold. First. as expected, par-
allel processing increases the algorithm's
execution speed. Second, a more subtle
improvement results from the spatial re-
lationships between the population mem-
bers. which has the effect of allowing
small pockets of the population to evolve

somewhat independently from the rest.
Consequently, as each subpopulation
searches a different area of the solution
space, a larger area of the solution space
is searched simultaneously.

Mark eligibleparents. This step globally
scarches various classifier tags and nu-
meric values to mark those classifiers that
can be considered as potential parents.

Calculate fitness. A biased version of
strength, called fitness, is used during par-
ent selection. The bias increases the
chance that those classifiers with higher
strength will be selected. Fitness is nor-
mally calculated by raising strength to a
prespecified power. These LCS simula-
tions, however, simply set fitness equal
to strength.

Select parents. The same parallelized
random selection algorithm that was used
in the competition to post messages is ap-
plied to parent selection, with the excep-
tion that the algorithm is now based on
the fitness value just calculated. The
number of parents selected is twice the
number of classifiers to be generated,
which is a fixed percentage of the total
number of classifiers.

Implicit in a sequential genetic algo-
rithm is the grouping of parents together
for applying the crossover operator. In a
fine-grained parallel genetic algorithm,
this is problematic as it introduces the
need for the classifiers to establish pair-
wise groupings. One parent of each group
must then send a copy of its conditions,
actions, and strength to its "mate." How-
ever, the reconfigurable capability of the
Rbus suggests a method of grouping par-
ents that maximizes bus utilization and is
computationally less demanding. All par-
ents are labeled as either even or odd de-
pending on their location in the array,
with the topmost parent being even. Each
even parent is grouped with the odd par-
ent immediately below it. Grouping the
parents in this fashion is important as it
splits the array into spatially disjoint seg-
ments that can make use of the Rbus
without contention. Thus, all "even" par-
ents can simultaneously broadcast to
their "odd" mates via the Rbus, using the
send-field primitive.

Send parents. Offspring generation by
means of the crossover operator requires
the conditions, actions. and strengths of
the two classifiers. The send-field primi-
tive supports this communication based

November 1994 35

, ... I
I...,..........r.....i I

Next
letter
prediction: F

1 I 1 ;i Detector 1 = E 3-
Detector 2 = D Learning
Detector 3 = C classifier

Detector 4 = B

Figure 6. Letter sequence prediction problem domain.

on the parent grouping just described. In
order to minimize communication time
during offspring generation, vertical
alignment is set up between the respec-
tive classifier components that will be-
come offspring after the following step
(create offspring). All even parents are
then disabled; further processing occurs
at the odd parent.

Create offspring. Offspring creation
proceeds by first applying the crossover
operator on selected parents at the odd
mate location and then applying the mu-
tation operator on the offspring thus gen-
erated. Both steps extensively use ran-
dom number generation to determine the
outcome of many decisions that are part
of these steps. Decisions include deter-
mining

which offspring are to be created by
crossover as opposed to just copying,
crossover point locations,
the type of crossover to perform, and
the number and location of mutations.

Crossover is similar to message cre-
ation since one variable is being condi-
tionally copied into another (that is, the
odd parent into the new offspring). The
copy state, initially set to “no copy,” con-
trols the conditional copying of the odd
parent. Crossover proceeds bit by bit
through the entire classifier. The copy
state is updated prior to the generation of
each bit of the offspring, such that all PES
whose first crossover point matches the
current bit set their copy state to “copy.”
All PES whose second crossover point
matches the current bit set their copy state
to “no copy.” Thus, for the range of bits
between the two crossover points, the off-
spring originates from the odd parent.

Mutation changes up to three bits in
each offspring, and for each one of these
possible mutations it maintains a mutua-
tion position variable and a mutation-
active flag. Like crossover, mutation pro-
ceeds bit by bit over the entire classifier,
but now, when the current bit matches a
mutation position in a classifier that has
the respective mutation-active flag set,

Table 4. Average number of active processing elements per call by primitive operation.

that classifier undergoes a mutation at
this bit position.

The final step of creating the offspring
is to calculate the new strength for the
offspring. In this implementation, an av-
erage of the parent strengths is applied.

Duplication check. There is nothing to
prevent the offspring generation step
from producing many identical classifiers.
In particular. high-strength classifiers
have a tendency to reproduce rapidly,
quickly dominating the entire set of clas-
sifiers and degrading system perfor-
mance. A duplication check limits the
number of duplicates by reading each off-
spring from the array and comparing it
with the current classifier list. If the num-
ber of responders is greater than permit-
ted, the offspring is eliminated.

Select replacements. Replacement se-
lection relies on the segmented minimum
primitive to build a local neighborhood
around each offspring. From this neigh-
borhood, a classifier is selected that will
be replaced by the offspring. The size of
the neighborhood, N , is typically a small
integer. In our LCS simulations it was
three.

Use of the segmented primitives re-
quires that the segment boundaries be set
up beforehand. Segment boundaries are
created with a two-step process in which
first the high, and then the low, segment
boundaries are propagated outward from
each offspring. Taken together, the up-
per and lower segment bounds demar-
cate the neighborhood of the offspring
from which the replacement will be se-
lected. If two offspring are within N
of each other, their neighborhoods are

Avg. Percent Number of classifiers
Primitive cycles total 200 400 600 800 1,000 1,200

Subtract
Multiply-vector
Scan Add
Compare
Move Field
Add-vector
Reduce Add
Random
Maximum
Decrement

118
957
992

87
67
78

119
68
54
59

19.94
17.49
14.15
13.48
7.51
1.46
1.24
0.95
0.79
0.55

24.1
28.6
47.1
46.2
19.9
5.5

200.0

47.1
200.0

...

~

59.6
44.0
87.1

113.2
54.8
3.5

400.0

87.2
400.0

...

~

101.8
69.2

120.4
177.6
69.6
4.3

540.0

120.4
600.0

...

165.7
27.4

229.7
391.0
84.5

3.5
688.0

229.7
800.0

...

~~

198.1
46.1

203.3
416.4
111.0

4.3
998.6

203.3
1,000.0

...

~

268.1
38.6

21 0.3
559.9
117.8

1198.9

210.3
1,200.0

4.47

...

~~ ~

COMPUTER

merged and one of the two will be dis-
carded, depending on the location of the
replacement. If the two offspring are
within 2N. but further than N , then the
lower bound of the topmost bound is
shortened so it doesn’t overlap that of the
second. The segmented minimum primi-
tive then selects the lowest strength clas-
sifier within each segment. which is then
marked for replacement.

Send offspring. Following the replace-
ments selection, the spread primitive broad-
casts the offspring to the replacement.

Calculate specificity. The specificity for
the offspring is calculated at its new lo-
cation to minimize communication costs.
Since specificity is just a count of the
number of 0s and Is in the conditions and
actions of the offspring, the desired re-
sult is obtained by performing bit-by-bit
compares and incrementing the speci-
ficity variable for each.

Performance
evaluation

An associative architecture simulator
was developed on a MasPar MP-1 system
that consisted of 8.192 4-bit processors.
The simulator served as a highly
instrumented testbed on which the per-
formance of various algorithms was in-
vestigated. Additionally, the use of the
MP-1 parallel computer with an architec-
ture closely matched to that of the simu-
lated machine proved highly effective in
reducing the runtime of the simulations.

The LCS algorithms were exercised
on this simulator and tested on a letter
prediction problem. In this problem, the
LCS detectors were a sliding window
over a continually repeated sequence of
letters, and the desired output of the
LCS was a prediction of the next letter
to become visible in the window, as
shown in Figure 6. This was a difficult
problem as the system had no knowl-
edge of the problem domain t o begin
with. and had no meanings associated
with its detector inputs or effector out-
puts. From a qualitative reinforcement
signal that merely indicated ‘*right” or
“wrong.” the LCS had to create a set of
prediction rules.

Many simulations, which varied the
number of classifiers from 200 to 1,200,
were performed to test the effect on exe-
cution time. The number of processing el-

November 1994

Figure 7. Total
number of execu-

tion cycles for a
varying number of
classifiers, showing

the number of
cycles contributed

by each of the three
layers: production

system, credit
assignment, and

classifier discovery.

c4 I I

H Classifier discovery

1

O b *bo 4;o d o 800 1,boo 1,200
Number of classifiers

ements involved was five times the num-
ber of classifiers, or from 1 .000 to 6.000.
Figure 7 shows the total number of ma-
chine cycles required to complete a simu-
lation run of 4,000 cycles. In general, ex-
ecution time increased slightly with
respect to the number of classifiers. The
total number of cycles that were at-
tributed to each layer is also shown in Fig-
ure 7 . As expected. the production sys-
tem layer accounted for most of the
cycles. It is interesting to note that the

Arithmetic operations
accounted for most of
the execution cycles.

Communication
operations accounted

for very few.

classifier discovery layer, while not in-
voked at every cycle, was still responsible
for the next largest block of cycles and
that it grew with the number of classifiers.
Consequently, the increase in total exe-
cution time was due to the classifier dis-
covery layer.

In all simulations, primitive operations
accounted for approximately 78 percent
of the total number of cycles. In particu-
lar, it is important to know the degree of
parallelism exercised within each of the
primitives. Table 4 shows the ten primi-
tives that consumed the most cycles.
sorted in descending order by the per-
cent of the total number of execution cy-
cles they contributed. Next to each prim-

itive is shown the average number of cy-
cles executed per call; the percent of the
total number of cycles; and, for a range of
different numbers of classifiers, the av-
erage number of active PES per call.
From this table, it can be concluded that
the arithmetic operations were directly
responsible for the largest portion of the
total number of execution cycles. Fur-
thermore, it is also clear that the com-
munication operations comprised an in-
significant portion of the total number
of cycles. The data for the random prim-
itive is left out as that primitive was
coded to generate a random number in
all classifier records.

An important concern was whether
there were enough active PES to justify the
use of bit-serial algorithms, or whether
the work should have been performed se-
quentially in the controller with bit-par-
allel hardware. Those primitives where
the average number of active PES was less
than the average number of cycles are
multiply- vector, scan add, and add-vector.
By moving these operations to the con-
troller, approximately 12 percent of all cy-
cles were eliminated. However, since the
number of active PES often varied greatly
between individual calls, it was important
to preface each routine with a test of the
number of active PES to determine where
to perform the calculation.

lthough this article focused
on a single type of encoding for
the classifiers, the architecture,

while highly specialized, is quite capable
of easily supporting any number of ge-
netic algorithm encodings. This is due to
the very flexible way in which the CAM
data can be processed. Furthermore. the
architecture will enable the development
of many different algorithms for both the

37

credit assignment and classifier discov-
ery layers, in conjunction with new re-
search results on LCSs.

The work reported here shows that as-
sociative architectures with the correct com-
munication support, such as a reconfig-
urable long-distance communication bus,
are effective for building Learning Classifer
Systems. In particular, the experimental
data showed that the runtime of the system
increased only slightly even as the number
of classifiers was increased sixfold.

Research to date has investigated the
development of a specialized associative
architecture t o support inductive rule-
based machine learning with genetic al-
gorithms. Future development of intelli-
gent systems with broad-based machine
learning and adaptive capabilities may
benefit directly from such specialized ar-
chitectures. These architectures offer
valuable potential for achieving a high
degree of reactivity to inputs from the en-
vironment. In particular, as is possible
with this architecture, it is important that
ever-larger knowledge bases be sup-
ported in a manner that does not signifi-
cantly affect runtime.

References

1. J.H. Holland, “Escaping Brittleness: The
Possibilities of General-purpose Learning
Algorithms Applied to Parallel Rule-
Based Systems.” in R.S. Michalski, J.G.
Carbonell. and T.M. Mitchell. eds.. Ma-
chine Learning: An Artificial Intelligence
Approach. Morgan Kaufmann, Los Altos,
Calif., 2nd edition, 1986. pp. 593-623.

2. L.B. Booker, D.E. Goldberg. and J.H.
Holland. “Classifier Systems and Genetic
Algorithms.” Artificial Intelligence. Vol.
40. Sept. 1989, pp. 235-282.

3. G. Robertson, “Parallel Implementation
of Genetic Algorithms in a Classifier Sys-
tem,” L. Davis. ed.. Genetic Algorithmr
and Simulated Annealing, Pitman, Lon-
don. 1987. pp. 129-140.

4. M. Dorigo. E. Sirtori. “Alecsys: A Parallel
Laboratory for Learning Classifier Sys-
tems.“ Proc. 4th Inr’l Conf: on Genetic Al -
gorithms. Morgan Kaufmann. Los Altos.
Calif.. 1991. pp. 296-302.

5 . C.D. Stormon et al.. ”A General-purpose
CMOS Associative Processor IC and Sys-
tem.” l E E E Micro. Vol. 12. No. 6. Dec.
1992. pp. 68-78.

IEEE/IAFE Conference on
Computational Intelligence for

Financial Engineering
April 9-1 1, 1995, New York City, Crowne Plaza Manhattan

The IEEE/IAFE CIFEr Conference is the first major collaboration between the
professional engineering a n d financial communities, and will be the leading
forum for new technologies and applications in the intersection of computa-
tional intelligence and financial engineering. Intelligent computational systems
have become indispensable in virtually all financial applications, from portfolio
selection to proprietary trading to risk management. Topics i n which papers,
panel sessions, a n d tutorial proposals are invited include, but are not limited
to, the following:

Financial Engineering Computer & Engineering
Applications Applications & Models
Asset Allocakon Neural Networks
Trading Systems Machine Intelligence

Corporate Financmg Probabihskc Reasoning
Forecastmg Fuzzy Systems

Hedging Strategies Parallel Compukng
Opkons and Futures Pattern Analysis

Genekc Algonthms
Stochaskc Processes

Dynamic Opkmizakon
Knowledge & Data Engmeenng

Time Senes Analysis

k s k Arbitrage
h s k Management

Complex Denvakves

Technical Analysis
Harmonic Analysis @-E%.\ Signal Processing

Portfolio Management
Standards Discussions

Non-Linear Dynamics

@
Currency Models E E I C o U P U T E R L V C L n

ro,.rn

For more informakon contact
Meeting Management 2603 Main Street, Suite 690. Imine. CA 92714

17141 752-8205 Fax 17141 752-7444

6. Associative Computing: A Programming
Paradigm for Massively Parallel Comput-
ers, J.L. Potter, ed., Plenum Press, New
York, 1992.

7. C.C. Weems et al., “The Image Under-
standing Architecture,” Int’l. J . Computer
Vision, Vol. 2. No. 3, Jan. 1989. pp. 251-
282.

8. R.M. Lea, “WASP: A WSI Associative
String Processor,” J. V L S I Signal Process-
ing. Vol. 2, No. 4, May 1991, pp. 271-285.

9. F.P. Herrmann and C.G. Sodini, “A Dy-
namic Associative Processor for Machine
Vision Applications,” IEEE Micro, Vol.
12. No. 3. June 1992, pp. 31-41.

10. R.H. Storer et al., “An Associative Pro-
cessing Module for a Heterogeneous Vi-
sion Architecture.” IEEE Micro. Vol. 12,
No. 3. June 1992, pp. 42-55.

11. G.E. Blelloch. Vector Models ,for Datrr-
Parallel Computing. MIT Press. Cam-
bridge. Mass.. 1990.

12. H. Muhlenbein, M. Gorges-Schleuter. and
0. Kramer. “New Solutions to the Map-
ping Problem of Parallel Systems ~ the
Evolution Approach.’’ Parallel Conzput-
ing. Vol. 4. No. 3, June 1987. pp. 269-279.

Kirk Twardowski is a staff engineer at Lord
Federal Systems, Owego. New York. His re-
search interests include high-performancc
computer architecturcs, associative proccss-
ing. VLSI design, genetic algorithms. and ar-
tificial intelligence. He received a BS degree in
computer systems engineering in 1986 from
Rensselaer Polytechnic Institute. and MS and
PhD degrees in computer engineering from
Syracuse University in 1990 and 1994, respec-
tively. He is a member of IEEE Computer So-
ciety. ACM. and AAAI.

Readers can contact the author at Loral
Federal Systems, 1801 State Rt. 17C, Owego.
NY, 13827, e-mail kirkt@lfs.loral.com.

COMPUTER

mailto:kirkt@lfs.loral.com

