
U. Pitt – CS 3410
1

Fault Tolerance
• High performance systems must be fault-tolerant: they must be able to

continue operating despite the failure of a limited subset of their hardware
or software.

• They must also allow graceful degradation: as the size of the faulty set
increases, the system must not suddenly collapse but continue executing
part of its workload.

• Faults Æ errors Æ failures
– A fault is a physical defect, imperfection or flaw that occurs within

some hardware or software component. A fault can be caused by
specification mistakes, implementation mistakes, component
defects or external disturbance (environmental effects).

– An error is the manifestation of a fault.
– If the error results in the system performing its function(s)

incorrectly, then a system failure occurs.

U. Pitt – CS 3410
2

Physical
Universe

Information
Universe

External
Universe

Faults Errors Failures

Three-universe model representing the cause-and-effect relationship between
faults, errors, and failures. Faults occur in the physical universe and cause
errors to occur in the informational universe. Errors can result in failures that
occur in the external universe.

The Three universe model

U. Pitt – CS 3410
3

Specification
MistakesMistakes

Implementation
Mistakes

External
Disturbances

Component
Defects

Hardware
Faults

Software
Faults

Errors
System
Failures

Cause-and-effect relationship

(faults, errors, and failures in a system)

U. Pitt – CS 3410
4

Dealing with Faults

• Fault avoidance aims at preventing the occurrence of faults at the first
place: design reviews, component screening, testing.

• Fault Tolerance is the ability of a system to continue to perform its tasks
after the occurrence of faults

– Fault Masking: preventing faults from introducing errors

– Reconfiguration: Fault detection, location, containment and recovery

Types of faults

• A permanent fault remains in existence indefinitely if no corrective
action is taken.

• A transient fault disappears within a short period of time

• An intermittent fault may appear and disappear repeatedly.

U. Pitt – CS 3410
5

Types of Redundancy
• Hardware Redundancy: Based on physical replication of hardware.
• Software Redundancy: The system is provided with different software

versions of tasks, preferably written independently by different teams.
• Time Redundancy: Based on multiple executions on the same

hardware in different times.
• Information Redundancy: Based on coding data in such a way that a

certain number of bit errors can be detected and/or corrected.

• forward-error recovery: the error is masked
without any computations having to be re-done.

• backward-error recovery: periodically take
checkpoints to save a correct computation state.
When error is detected, roll back to a previous
checkpoint, restore the correct state and resume
execution.

checkpoint

error

Types of Recovery

U. Pitt – CS 3410
6

System
Requirements

System
Design

System
Evaluation

Fault
Avoidance

Fault
Tolerance

Markov Models
Fault Analysis
Tolerance Analysis
Testing
Environmental Study
Failure Modes
Combinatorial Models
Failure Data

Parts Selection
Design Reviews
Quality Control
Design Methodology
Design Rules
Shielding
Heat Sinks
Documentation

Hardware Redundancy
Software Redundancy
Information Redundancy
Time Redundancy
Fault Detection
Fault Containment
Reconfiguration

A top-level view of the system design process illustrating the importance
of fault avoidance, fault tolerance, and system evaluation.

U. Pitt – CS 3410
7

Redundant systems

• Duplex systems: can detect a fault by
executing twice (on separate hardware on
sequentially on the same hardware) and
compare the results.

• Triple modular redundancy (TMR): can mask
an error by executing three times and taking a
majority vote.

• Sparing: Can have spares (hot or cold spares) and use a spare after a
permanent fault is detected in the primary hardware.

• N modular redundancy (NMR): can mask an
error by executing N times and taking a
majority vote. How many faults can be
tolerated?

V

C
result

result

error

U. Pitt – CS 3410
8

Passive redundancy

Normal
Operation

Fault Masking
Operation

Failure
faultfault

Normal Operation

Fault
Occurs

Error
Occurs

System
Failure

Active redundancy

Degraded
Operation

Fault Detection
and Location

Reconfiguration
and Recovery

Three
Universe
Model of
Fault, Error,
and Failure
Occurrence

U. Pitt – CS 3410
9

Module 1

Module 2

Module 3

Input 1

Input 2

Input 3

Voter Output

Triple modular redundancy (TMR) uses three identical modules, performing identical
operations, with a majority voter determining the output.

Triple modular redundancy with triplicated voters can be used to overcome susceptibility to
voter failure. The voter is no longer a single point of failure in the system.

Module 1

Module 2

Module 3

Input 1

Input 2

Input 3

Voter Output 2

Voter

Voter

Output 1

Output 3

Passive Redundancy

U. Pitt – CS 3410
10

Input 1

Input 2

Input 3

Module 1

Module 2

Module 3

Voter

Voter

Voter

Module 1

Module 2

Voter

Voter

VoterModule 3

Input 1 Module 1

Input 2

Module 3

Module 2

Input 4 Module 2

Input 3

Input 5 Module 2

Voter Output

In multiple-stage TMR systems, voting occurs between each stage so that errors
are corrected before being passed to a subsequent module.

5MR is an example of NMR with five identical modules. Majority voting allows the
failure of two modules to be tolerated.

U. Pitt – CS 3410
11

Module 1

Module 2

ComparatorInput

Output

Agree/Disagree

Duplication with comparison uses two identical modules performing the same operations
and compares their results. Fault detection is provided but not fault tolerance.

The necessary comparisons in duplication with comparison can be implemented in software.
Both processors must agree that results match before an output is generated.

Processor 1

Switch
Control

Memory

Two-port
Memory

Processor 2

Memory

Switch
Control

Software
Comparisons
in Each
Processor

Output

Active Redundancy

U. Pitt – CS 3410
12

Shared Memory

Processor A’s Result

Processor B’s Result

Comparison
Task

Comparison
Task

Processor A Processor B

Error Signals
A B

Processor B’s
Private Memory

Processor B’s
Result

Processor A’s
Private Memory

Processor A’s
Result

A software implementation of duplication with comparison (shared memory systems)

U. Pitt – CS 3410
13

In standby sparing, one of n modules is used to provide the system’ s output, and the remaining n-1 modules
serve as spares (Hot or Cold). Error detection techniques identify faulty modules so that a fault-free module is
always selected to provide the system’ s output.

Compare

OutputModule 1

Module 2

Module n

Error
Detection

Error
Detection

Error
Detection

n to 2
Switch

Agree/Disagree

The pair-and-a spare technique combines duplication with comparison and standby sparing. Two modules are
always online and compared, and any spare can replace either of the online modules.

Module 1

Module 2

Module n

Error
Detection

Error
Detection

Error
Detection

n to 1
Switch

Outputinput

input

U. Pitt – CS 3410
14

Module
1

Module
2

Module
N

System
Inputs

Comparator Detector

Collector
System
Output

Sift-out modular redundancy uses a centralized collector to create the system output. All modules are
compared to detect faulty modules - Faculty module can be put back in service if fault is transient.

U. Pitt – CS 3410
15

Module 1

Module 2

Module N

Spare 1

Spare M

Disagreement
Detector

Switch

Voter

Disagreement Identification

Output

System
Inputs

N-modular redundancy with spares combines NMR and standby sparing. The voted
output is used to identify faulty modules, which are then replaced with spares.

Module 1

Module 2

Module N

System Inputs
Voter System

Output

Switch

Switch

Switch

Hybrid Redundancy

Self-purging redundancy uses the system output to remove modules whose output
disagrees with the system output.

U. Pitt – CS 3410
16

Module 1A

Module 1B

Module 1A

Module 1B

Module 1A

Module 1B

Comparator

Comparator

Comparator

Reconfiguration
Switch

Reconfiguration
Switch

Reconfiguration
Switch

Inputs
Flux

Summing
Device

Output

The triple-duplex approach to hybrid redundancy.

U. Pitt – CS 3410
17

1

T
r
a
n
s
m
i
t
t
e
r

0

0

1 0

0 1

R
e
c
e
i
v
e
r

Faulty line
always “1”

0

1

Received
version of X

Received
version of X

1

1

1

No longer complements
because of faulty line

Parallel
Bus

Complements

Illustration of alternating logic time redundancy – the second transmission is
the complement of the first.

Transmit X
at time t

Transmit X at
time t +

Time Redundancy

U. Pitt – CS 3410
18

Time

Computation

Computation

Computation

Data

Data

Data

In time redundancy, computations are repeated at different points in time and then compared.

Store
Result

Store
Result

Store
Result

Compare
Error
Signal

Time

Computation
Data X Store

Result

Compare

Error
Signal

Store
Result

Data X Encode
e(x)

Computation
R

Decode
Result
e-1(R)

Permanent faults can be detected using time redundancy by modifying the way in which
computations are performed.

t0

t0 +

t0 + n

t0

t0 +

U. Pitt – CS 3410
19

Information Redundancy

- Parity codes
- Hamming codes
- M-of- n codes
- BCH (cyclic) codes

U. Pitt – CS 3410
20

4-by-4 Array with Seven Faulty Elements The corresponding bipartite graph.

R1

C2

C1

R4

R2

R3 C3

C4

Repair Most

(1,2)

2,2

(3,3)

(2,3)

(4,1)

(3,1) (3,2)

(2,4)

(1,3)(1,1)(1,1)

(2,1)

(4,2)(4,2)

(1,4)

(3,4)

(3,4)

Example of repair
(reconfiguration of memory arrays)

U. Pitt – CS 3410
21

Fault-tolerant software

• Consistency checks: a software acceptance test to detect wrong results.

• N-version programming: Prepare N different versions and run them (in
parallel or sequentially). The voting at the end will select the output of the
majority.

• Sources of common-mode failures:

– Ambiguities in the specification

– Choice of the programming language

– Choice of numerical algorithms

– Common background of the software developers

• Recovery block approach:

– Each job/task has a primary version and one or more alternatives.

– When primary version is completed, an acceptance test is performed.

– If the acceptance test fails, an alternative version can be invoked.

U. Pitt – CS 3410
22

Reliability and availability
• The reliability at time t, R(t), is the conditional probability that the

system performs correctly during the period [0,t], given that the
system was performing correctly at time 0.

• The unreliability, F(t), is equal to 1 – R(t). Often referred to as the
probability of failure.

• The availability at time t, A(t) is the probability that a system is
operating correctly and is available to perform its functions at time t.
Unlike reliability, the availability is defined at an instant of time.

• The system may incur failures but can be repaired promptly, leading to
high availability.

• A system may have very low reliability, but very high availability!

U. Pitt – CS 3410
23

Mean time to failure (FTTF)
• Let R(t) be the reliability of a system and F(t) = 1 - R(t).

• F(t) is the probability that the system is not functioning correctly at time t.

Hence, is the probability that the system fails exactly at time

t (failure density function).

• The average time to failure is

• Example: if R(t) = , then
– MTTF = 1 / λ ,
– λ is the failure rate.

dt

tdR

dt

tdF)()(−=

∫ ∫∫∫
∞ ∞∞

∞
∞

=+−=−==
0 00

0

0

)()()]([
)()(

dttRdttRttRdt
dt

tdR
tdt

dt

tdF
tMTTF

te λ−

t

R(t)

1

U. Pitt – CS 3410
24

Combinatorial calculation of the reliability

• For n units connected in series, the system is
functioning if all the units are functioning, thus
the reliability of the system is

R(t) = R1 (t) R2 (t) … Rn (t)
u1 u2

un

• For n units connected in parallel, the system is
functioning if at least one unit is functioning, thus

1- R(t) = (1- R1(t)) (1- R2(t)) … (1- Rn(t)),

and the system reliability is

R(t) = 1 - (1- R1(t)) (1- R2(t)) … (1- Rn(t))

u1

u2

un

• Example: Reliability of a TMR system is

voterunitunitunit RRRR))1(3(32 +−

U. Pitt – CS 3410
25

Markov processes
• Is a process that can be represented by states and probabilistic state

transitions, such that the probability of moving from a state si to another
state sj , does not depend on the way the process reached state si.

• Example: a TMR system with unit MTTF = 1/λ , and mean time to
repair equal to = 1/µ .

3(1−λ)λ2 + λ3

• Note that the failure state is an absorbing state.

• For discrete time processes, one transition occurs in every time unit.

No
faults

one
fault

System
failure

3(1−λ)2 λ
2(1−λ) λ+ λ2

µ

(1−λ)2 −µ(1−λ)3

U. Pitt – CS 3410
26

Discrete Markov processes

• A Markov process with n states can be represented by an nxn probability
matrix A = [ai,j], where ai,j is the probability of moving from state i to state
j in one time unit.

• The sum of the elements in each row of A is equal to 1.

• If p(t) = [pi(t)] is a vector such that pi(t) is the probabilities of being in state
i at time t, then, p(t+k) = Bk p(t), where B is the transpose of A.

• Can use the first step analysis to find

–the average number of transitions before absorption, and

–the average time of being in a certain state (if steady state, then Bp = p).

U. Pitt – CS 3410
27

Average # of transitions before absorption
• Consider an n state Markov process in which state n is an absorption state,

and let vi be the average number of steps to absorption if we start at state i.

• Hence, for every i=1, … , n-1 we have

vi = ai,1 (1+v1) + … + ai,n-1 (1+vn-1) + ai,n

• Solve the above n-1 equations and find the values of v1 , … , vn-1

• Given an initial probability distribution p(0), the average time to absorption
is p1 v1 + … + pn-1 vn-1 + 0 . pn

• Example: The TMR system without repair (µ = 0) and ignoring λ2 terms

1 2 3
3λ 2λ

1−2λ1−3λv1 = (1-3λ) (v1 +1) + 3λ (v2 +1)

v2 = (1-2λ) (v2 +1) + 2λ

Which gives v2 = 1 / 2λ and v1 = 5 / 6λ

U. Pitt – CS 3410
28

Another example of the first step analysis
• Consider an n+2 state Markov process in which states n+1 and n+2 are

absorption states, we want to find out what is the probability that the process
will end up in state n+2 (as opposed to n+1).

• Let ui be the probability that the process will eventually end up in state n+2
assuming that the process starts at state i.

• Hence, for every i=1, … , n we have

ui = ai,1 u1 + … + ai,n un + ai,n+2

• Solve the above n equations and find the values of u1 , … , un

• Given an initial probability distribution p(0), the probability of absorption to
state n+2 is p1 u1 + … + pn un

• Example: The TMR system with a voter and voter failure rate λv

1 2 3
3λ 2λ

1−2λ- λv1−3λ− λv
u1 = (1 - 3λ - λv) u1 + 3λ u2 + λv

u2 = (1 - 2λ - λv) u2 + λv

Which gives u1 = λv (5λ + λv) / (2λ + λv) (3λ + λv)
4

λv
λv

U. Pitt – CS 3410
29

Cache-based checkpointing

Reg + cache ----------------------

Active … … … … … … … … ... Stable

On cache miss = save registers (checkpoint)

Rollback = restore registers + invalidate dirty cache lines

Notes:
• Same principle applies to checkpoint in paged memory systems

Main memory (active) ---------- > Disk (stable)

• Need write-back cache and not write through

• May trigger checkpoints at regular intervals

Need to consider faults during checkpointing
- save state twice and record time before and after checkpoints
- if fault occurs during last checkpoint, restore the previous one

Main Memory--------------------- >

(t1 .. State1 .. t2… … … … … … … .t3 .. State2 .. t4)

U. Pitt – CS 3410
30

• Memory pages are active ------ disk storage is stable

• Keeps two copies of each page in your virtual address

• Keep a global counter to register the number of the last checkpoint (V)

• Modify your TLB (translation lookaside buffer) to reflect one active
page (L = 1 & v = V) and one backup page (L = 0 & v < V)

• Checkpoint Æ V++

• At reference Æ check v, and if v < V, interchange active and backup

(L = 0) @ old active (L=1 , v = V) @ old backup

• Rollback Æ copy backup to active

• Overhead = check v at each reference

Virtual checkpointing

U. Pitt – CS 3410
31

Using a second processor for checkpointing

• Checkpoint Æ send state to backup

• Periodically send (I am alive) messages --- heart-beats

• If a heart beat is missing, backup takes over from last checkpoint.

• Checkpoint each processor at cache miss (save registers)

• Works only with write back and not write through

• Cache coherence problems for shared variables??

Checkpointing in shared memory system

U. Pitt – CS 3410
32

GLOBAL checkpointing:
- S initiates checkpoints and inform others

- Others take checkpoints

- To prevent incomplete migration: If a page is

received after the ith checkpoint but was sent before

the ith checkpoint, then a local checkpoint is taken.

- Recovery is by rolling back to ith checkpoint.

Checkpointing in distributed shared memory systems
(Memory pages are active ------ disk storage is stable)

U. Pitt – CS 3410
33

Checkpointing in distributed memory systems
(Memory pages are active ------ disk storage is stable)

x
P1 P2

If P2 roll backs, then
message M is lost

x

P1 P2

If P1 roll backs, then
message M is an orphan

MM

U. Pitt – CS 3410
34

Consistent recovery line

Inconsistent recovery line

U. Pitt – CS 3410
35

1) Synchronous checkpointing (pessimistic)

-Initiator, S, send a request to checkpoint to every P,
with the stamp of the last message received by S from P

-P determines if it has to checkpoint,

- If S gets any NOT OK, it aborts the checkpointing, else
it asks everybody to make the checkpoint permanent.

-No messages are transmitted during checkpointing

ROLL BACK

• S is faulty and rolls back – It sends messages to every P, with the
stamp of the last messages (at checkpoint) from S to P

• P determines if it has to roll back, and if so, repeat the procedure.

S P

U. Pitt – CS 3410
36

2) Asynchronous checkpointing (optimistic)

• lost messages can be retransmitted (if logged)

• orphan messages should not be permitted

- Each processor takes checkpoints asynchronously

- Dependencies are kept track of in messages

- If S rolls back, it notifies every P. Then P checks if it has to roll back,
if so, it repeats recursively, if not it retransmit the messages P -> S.

- May roll-back to beginning of computation

- If received messages are logged in stable storage, then this minimizes
retransmission.

- Can eliminate checkpoints when sure that they are not needed.

U. Pitt – CS 3410
37

Forward recovery

A

B

S

Roll-forward

Spare
activated

Spare
released

x

1

I1

I1

I1

I2

I2

2

3
- Spare acts as an arbiter to

determine the faulty processor

- Direction of transfer in (3) is
determined by fault location

A

B

S

x

1

I1

I1

I1

I2

I2

2

3

x - With double faults, roll back
I1

I1

