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Fault Tolerance
• High performance systems must be fault-tolerant: they must be able to 

continue operating despite the failure of a limited subset of their hardware 
or software.

• They must also allow graceful degradation: as the size of the faulty set 
increases, the system must not suddenly collapse but continue executing 
part of its workload.

• Faults Æ errors Æ failures
– A fault is a physical defect, imperfection or flaw that occurs within 

some hardware or software component. A fault can be caused by 
specification mistakes, implementation mistakes, component 
defects or external disturbance (environmental effects).

– An error is the manifestation of a fault.
– If the error results in the system performing its function(s) 

incorrectly, then a system failure occurs. 
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Three-universe model representing the cause-and-effect relationship between 
faults, errors, and failures. Faults occur in the physical universe and cause 
errors to occur in the informational universe. Errors can result in failures that 
occur in the external universe.

The Three universe model
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( faults, errors, and failures in a system)
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Dealing with Faults

• Fault avoidance aims at preventing the occurrence of faults at the first 
place: design reviews, component screening, testing.

• Fault Tolerance is the ability of a system to continue to perform its tasks 
after the occurrence of faults

– Fault Masking: preventing faults from introducing errors 

– Reconfiguration: Fault detection, location, containment and recovery

Types of faults

• A permanent fault remains in existence indefinitely if no corrective 
action is taken.

• A transient fault disappears within a short period of time

• An intermittent fault may appear and disappear repeatedly.



U. Pitt – CS 3410
5

Types of Redundancy
• Hardware Redundancy: Based on physical replication of hardware.
• Software Redundancy: The system is provided with different software 

versions of tasks, preferably written independently by different teams. 
• Time Redundancy: Based on multiple executions on the same 

hardware in different times.
• Information Redundancy: Based on coding data in such a way that a 

certain number of bit errors can be detected and/or corrected. 

• forward-error recovery: the error is masked 
without any computations having to be re-done.

• backward-error recovery: periodically take 
checkpoints to save a correct computation state. 
When error is detected, roll back to a previous 
checkpoint, restore the correct state and resume 
execution. 

checkpoint

error

Types of Recovery
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A top-level view of the system design process illustrating the importance 
of fault avoidance, fault tolerance, and system evaluation.
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Redundant systems

• Duplex systems: can detect a fault by
executing twice (on separate hardware on 
sequentially on the same hardware) and 
compare the results.

• Triple modular redundancy (TMR): can mask 
an error by executing three times and taking a 
majority vote.

• Sparing: Can have spares (hot or cold spares) and use a spare after a 
permanent fault is detected in the primary hardware.

• N modular redundancy (NMR): can mask an 
error by executing N times and taking a 
majority vote. How many faults can be 
tolerated?

V

C
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result

error
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Voter Output

Triple modular redundancy (TMR) uses three identical modules, performing identical 
operations, with a majority voter determining the output.

Triple modular redundancy with triplicated voters can be used to overcome susceptibility to 
voter failure. The voter is no longer a single point of failure in the system.
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Passive Redundancy
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Voter Output

In multiple-stage TMR systems, voting occurs between each stage so that errors 
are corrected before being passed to a subsequent module.

5MR is an example of NMR with five identical modules. Majority voting allows the 
failure of two modules to be tolerated.
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Agree/Disagree

Duplication with comparison uses two identical modules performing the same operations 
and compares their results. Fault detection is provided but not fault tolerance.

The necessary comparisons in duplication with comparison can be implemented in software. 
Both processors must agree that results match before an output is generated.

Processor 1

Switch
Control

Memory

Two-port
Memory

Processor 2

Memory

Switch
Control

Software
Comparisons
in Each
Processor

Output

Active Redundancy

U. Pitt – CS 3410
12

Shared Memory
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A software implementation of duplication with comparison (shared memory systems)
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In standby sparing, one of n modules is used to provide the system’ s output, and the remaining n-1 modules 
serve as spares (Hot or Cold). Error detection techniques identify faulty modules so that a fault-free module is 
always selected to provide the system’ s output.
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The pair-and-a spare technique combines duplication with comparison and standby sparing. Two modules are 
always online and compared, and any spare can replace either of the online modules.

Module 1

Module 2

Module n

Error 
Detection

Error 
Detection

Error 
Detection

n to 1
Switch

Outputinput

input

U. Pitt – CS 3410
14

Module
1

Module
2

Module
N

System 
Inputs

Comparator Detector

Collector
System 
Output

Sift-out modular redundancy uses a centralized collector to create the system output. All modules are 
compared to detect faulty modules - Faculty module can be put back in service if fault is transient.
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N-modular redundancy with spares combines NMR and standby sparing. The voted 
output is used to identify faulty modules, which are then replaced with spares.
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Hybrid Redundancy

Self-purging redundancy uses the system output to remove modules whose output
disagrees with the system output. 
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The triple-duplex approach to hybrid redundancy.
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In time redundancy, computations are repeated at different  points in time and then compared.
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Permanent faults can be detected using time redundancy by modifying the way in which 
computations are performed.
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Information Redundancy

- Parity codes
- Hamming codes
- M-of- n codes
- BCH (cyclic) codes
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4-by-4 Array with Seven Faulty Elements The corresponding bipartite graph.
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Fault-tolerant software

• Consistency checks: a software acceptance test to detect wrong results.

• N-version programming: Prepare N different versions and run them (in 
parallel or sequentially). The voting at the end will select the output of the 
majority. 

• Sources of common-mode failures:

– Ambiguities in the specification

– Choice of the programming language

– Choice of numerical algorithms

– Common background of the software developers

• Recovery block approach:

– Each job/task has a primary version and one or more alternatives.

– When primary version is completed, an acceptance test is performed. 

– If the acceptance test fails, an alternative version can be invoked.
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Reliability and availability
• The reliability at time t, R(t), is the conditional probability that the 

system performs correctly during the period [0,t], given that the 
system was performing correctly at time 0.  

• The unreliability, F(t), is equal to 1 – R(t). Often referred to as the 
probability of failure. 

• The availability at time t, A(t) is the probability that a system is 
operating correctly and is available to perform its functions at time t.  
Unlike reliability, the availability is defined at an instant of time.  

• The system may incur failures but can be repaired promptly, leading to 
high availability.

• A system may have very low reliability, but very high availability! 
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Mean time to failure (FTTF)
• Let R(t) be the reliability of a system and F(t) = 1 - R(t).

• F(t) is the probability that the system is not functioning correctly at time t. 

Hence,                       is the probability that the system fails exactly at time

t (failure density function).

• The average time to failure is 

• Example: if R(t) =        , then 
– MTTF =  1 / λ ,
– λ is the failure rate.
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Combinatorial calculation of the reliability

• For n units connected in series, the system is 
functioning if all the units are functioning, thus 
the reliability of the system is

R(t) = R1 (t) R2 (t) … Rn (t)
u1 u2

un

• For n units connected in parallel, the system is 
functioning if at least one unit is functioning, thus

1- R(t) = (1- R1(t)) (1- R2(t))  … (1- Rn(t)),

and the system reliability is

R(t) = 1 - (1- R1(t)) (1- R2(t))  … (1- Rn(t))

u1

u2

un

• Example: Reliability of a TMR system is

voterunitunitunit RRRR ))1(3( 32 +−
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Markov processes
• Is a process that can be represented by states and probabilistic state 

transitions, such that the probability of moving from a state si to another 
state sj , does not depend on the way the process reached state si.

• Example: a TMR system with unit MTTF = 1/λ , and mean time to 
repair equal to = 1/µ . 

3(1−λ)λ2 + λ3

• Note that the failure state is an absorbing state.

• For discrete time processes, one transition occurs in every time unit.

No 
faults

one 
fault

System 
failure

3(1−λ)2 λ
2(1−λ) λ+ λ2

µ

(1−λ)2 −µ(1−λ)3
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Discrete Markov processes

• A Markov process with n states can be represented by an nxn probability 
matrix A = [ai,j ], where ai,j is the probability of moving from state i to state 
j in one time unit.

• The sum of the elements in each row of A is equal to 1. 

• If p(t) = [pi(t)] is a vector such that pi(t) is the probabilities of being in state 
i at time t, then, p(t+k) = Bk p(t), where B is the transpose of A.

• Can use the first step analysis to find

–the average number of transitions before absorption, and

–the average time of being in a certain state (if steady state, then Bp = p).
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Average # of transitions before absorption
• Consider an n state Markov process in which state n is an absorption state, 

and let vi be the average number of steps to absorption if we start at state i. 

• Hence, for every i=1, …  , n-1 we have

vi = ai,1 (1+v1) +  … + ai,n-1 (1+vn-1) + ai,n

• Solve the above n-1 equations and find the values of v1 ,  … , vn-1

• Given an initial probability distribution p(0), the average time to absorption 
is    p1 v1 +  … + pn-1 vn-1 + 0 . pn

• Example: The TMR system without repair (µ = 0) and ignoring λ2 terms 

1 2 3
3λ 2λ

1−2λ1−3λv1 = (1-3λ) (v1 +1) + 3λ (v2 +1) 

v2 = (1-2λ) (v2 +1) + 2λ

Which gives v2 = 1 / 2λ and v1 = 5 / 6λ
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Another example of the first step analysis
• Consider an n+2 state Markov process in which states n+1 and n+2 are 

absorption states, we want to find out what is the probability that the process 
will end up in state n+2 (as opposed to n+1).

• Let ui be the probability that the process will eventually end up in state n+2
assuming that the process starts at state i. 

• Hence, for every i=1, …  , n we have

ui = ai,1 u1 +  …  + ai,n un + ai,n+2

• Solve the above n equations and find the values of u1 ,  …  , un

• Given an initial probability distribution p(0), the probability of absorption to 
state n+2 is    p1 u1 +  …  + pn un

• Example: The TMR system with a voter and voter failure rate  λv

1 2 3
3λ 2λ

1−2λ- λv1−3λ− λv
u1 = (1 - 3λ - λv) u1 + 3λ u2 + λv

u2 = (1 - 2λ - λv) u2 + λv

Which gives u1 = λv (5λ + λv) / (2λ + λv) (3λ + λv) 
4

λv
λv
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Cache-based checkpointing

Reg + cache ----------------------

Active … … … … … … … … ... Stable

On cache miss = save registers (checkpoint)

Rollback = restore registers + invalidate dirty cache lines

Notes:
• Same principle applies to checkpoint in paged memory systems

Main memory (active) ---------- > Disk (stable)

• Need write-back cache and not write through

• May trigger checkpoints at regular intervals

Need to consider faults during checkpointing
- save state twice and record time before and after checkpoints
- if fault occurs during last checkpoint, restore the previous one

Main Memory--------------------- >

(t1 .. State1 .. t2… … … … … … … .t3 .. State2 .. t4)
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• Memory pages are active ------ disk storage is stable

• Keeps two copies of each page in your virtual address

• Keep a global counter to register the number of the last checkpoint (V)

• Modify your TLB (translation lookaside buffer) to reflect one active 
page (L = 1 & v = V) and one backup page (L = 0 & v <  V)

• Checkpoint Æ V++

• At reference Æ check v, and if v < V, interchange active and backup

(L = 0) @ old active                     (L=1 , v = V) @ old backup

• Rollback Æ copy backup to active

• Overhead = check v at each reference

Virtual checkpointing
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Using a second processor for checkpointing

• Checkpoint Æ send state to backup

• Periodically send (I am alive) messages --- heart-beats

• If a heart beat is missing, backup takes over from last checkpoint.

• Checkpoint each processor at cache miss (save registers)

• Works only with write back and not write through

• Cache coherence problems for shared variables?? 

Checkpointing in shared memory system
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GLOBAL checkpointing:
- S initiates checkpoints and inform others

- Others take checkpoints

- To prevent incomplete migration: If a page is 

received after the ith checkpoint but was sent before 

the ith checkpoint, then a local checkpoint is taken.

- Recovery is by rolling back to ith checkpoint.

Checkpointing in distributed shared memory systems
(Memory pages are active ------ disk storage is stable)
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Checkpointing in distributed  memory systems
(Memory pages are active ------ disk storage is stable)

x
P1 P2

If P2 roll backs, then 
message M is lost

x

P1 P2

If P1 roll backs, then 
message M is an orphan

MM
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Consistent recovery line

Inconsistent recovery line
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1) Synchronous checkpointing (pessimistic)

-Initiator, S, send a request to checkpoint to every P, 
with the stamp of the last message received by S from P

-P determines if it has to checkpoint,

- If S gets any NOT OK, it aborts the checkpointing, else 
it asks everybody to make the checkpoint permanent.

-No messages are transmitted during checkpointing

ROLL BACK

• S is faulty and rolls back – It sends messages to every P, with the 
stamp of the last messages (at checkpoint) from S to P

• P determines if it has to roll back, and if so, repeat the procedure.

S P
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2) Asynchronous checkpointing (optimistic)

• lost messages can be retransmitted (if logged)

• orphan messages should not be permitted

- Each processor takes checkpoints asynchronously

- Dependencies are kept track of in messages

- If S rolls back, it notifies every P. Then P checks if it has to roll back, 
if so, it repeats recursively, if not it retransmit the messages P -> S.

- May roll-back to beginning of computation

- If received messages are logged in stable storage, then this minimizes 
retransmission.

- Can eliminate checkpoints when sure that they are not needed.
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Forward recovery
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- Spare acts as an arbiter to 

determine the faulty processor

- Direction of transfer in (3) is 
determined by fault location
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