Evolution of parallel hardware

- I/O channels and DMA
- Instruction pipelining
- Pipelined functional units
- Vector processors (ILLIAV IV was built in 1974)
- Multiprocessors (cm* and c.mmp were built in the 70's)
- Massively parallel processors (Connection machine, T3E, Blue Gene, ...)
- Symmetric Multiprocessors
- Cluster computing
- Multi-core processors
- Chip Multi-Processors

Two schools:

- Automatic detection of parallelism in serial programs and automatic distribution of data and computation.
- User specified parallelism (data distribution, computation distribution, or both).

Problems:

- It is hard to think "parallel." (is it ???)
- The dusty-deck problem (software inertia) and the absence of good tools for parallelizing serial programs.
- The I/O bottleneck.
- Shrinking government funding with lack of commercial success (changing trend??).
- Communication and synchronization overhead
- Execution time:

1) Communication time
2) Computation time.

Tradeoff between computation and communication

Flynn's hardware taxonomy:

Looks at instructions and data parallelism. Best known of many proposals.

| \mathbf{S} | \mathbf{I} | \mathbf{S}
 \mathbf{M} | \mathbf{D} | • S for single
 \mathbf{M} |
| :---: | :---: | :---: | :---: | :--- | | \bullet I I for instruction |
| :--- |

- An SISD machine is a serial computer.
- An SIMD machine is a vector machine or a lockstep machine with multiple units and one instruction stream.
- An MIMD machine is composed of different units, each having its own instruction stream.
- An MISD machine - need to be innovative to define it.

Taxonomy of MIMD machines.

- According to physical memory layout:

$\mathrm{GM}=$ global memory,$\quad \mathrm{DM}=$ distributed memory .

- According to memory directly addressable by processors:

SV = shared variables -- a single shared address space,
MP = message passing - each processor has its own space.

Note: Shared address space machines may be
UMA = uniform memory access, or NUMA = non-UMA.

DMSV = Memory physically distributed but logically shared.
GMSV = physically and logically shared memory - usually called symmetric multiprocessors (SMP) - usually use common bus.
$\mathrm{DMMP}=$ each processor has access to its local memory - data is shared through sending and receiving messages.

GM-SV

DM-MP

DM-SV

Which one is NUMA and which is UMA?

Speedup and efficiency.

- For a given problem A, of size n, let $t_{p}(n)$ be the execution time on p processors, and $t_{l}(n)$ be the execution time (of the best algorithm for A) on one processor. Then,

$$
\begin{aligned}
& \text { Speedup } S_{p}(n)=t_{l}(n) / t_{p}(n) \\
& \text { Efficiency } E_{p}(n)=S_{p}(n) / p
\end{aligned}
$$

Speedup is between 0 and p, and efficiency is between 0 and 1 .

- Linear Speedup means that S is linear with p (perfectly scalable machine)
- If speedup is independent of n, then the algorithm is said to be perfectly scalable.
- Minsky's conjecture:

Speedup is logarithmic in p

Amdahl's law.

Let f be the fraction of a program that has to be performed serially, then, using p processors, the maximum possible speedup is:

$$
S<\frac{1}{f+(1-f) / p}
$$

Hence, even with unlimited number of processors, the speedup cannot be larger than $1 / f$.

- Algorithms for the same problem may have different values of f.
- The above formula ignores the effect of n on f (serial portion of code may be fixed, independent of the size of the problem).
- Ignores the effect of memory:

Negative effect \longrightarrow conflict.
Positive effect \longrightarrow more memory, cache and registers.

- Ignores the effect of communication.

Critical path in task graphs:

1) In applications with dependent operations, speedup depends on the longest path in the dependency graph.
2) May have node labels (computation time) and link labels (communication time).

Example:

Scheduling task graphs to processors
 Example: List scheduling

- Move a task to the ready Q when all predecessors finish execution
- Keep the ready Q ordered by some priority:
- Depth of the task
- Number of descendents
- The depth of a task is the length of the longest path from the task to the last task in the graph.

List scheduling

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
proc 1	1	2	3	4	6	8	10	12	13
proc 2				5	7	9	11		

Nodes with un-equal execution times

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Proc 1	v1	$v 1$	$v 3$	$v 3$	$v 4$	$v 5$	$v 5$	$v 6$
Proc 2			$v 2$	$v 2$	$v 2$			
List scheduling								

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Proc 1	v 1	$v 1$	$v 3$	$v 3$	$v 5$	$v 5$	$v 6$	
Proc 2			$v 4$	$v 2$	$v 2$	$v 2$		

optimal scheduling

Some simple architectures

Linear arrays and rings

Meshes and torii

Tree architectures

Hypercube interconnections

- An interconnection with low diameter and large bisection bandwidth.
- A q-dimensional hypercube is built from two (q-1)-dimensional hypercubes.

Dimension 0

For a q dimension hypercube, calculate

- The number of nodes and the number of edges
- The node degree
- The diameter
- The bisection bandwidth

- Each node in a q-dimension hypercube has a q-bits identifier $x_{q-1}, \ldots, x_{1}, x_{0}$
- Identifiers of nodes across a dimension j differ in the $j^{\text {th }}$ bit (have a unit Hamming distance)
- Nodes connected by a link are called neighbors

Network parameters

Number of nodes (p)
Number of links
Interconnection graph

Network characteristics

Node degree $=$ number of neighbors
Diameter $=$ the maximum distance between any two nodes Bisection width $(\mathrm{BW})=$ the minimum number of links that partition the network into two, almost equal, halves.

	linear	ring	2D mesh	2D torus	Binary tree
degree					
diameter					
BW					

Examples of parallel algorithms

Finding the maximum on a linear array

Initially: processor, P_{i}, stores x_{i}
Each $P_{i}, i=0, \ldots, p-1$, executes
For $k=1$ to $k=p-1$
$x_{i}=\max \left\{x_{i-1}, x_{i}, x_{i+1}\right\}$
Speedup??

Result: P_{i} stores $\max \left\{x_{0}, \ldots, x_{p-1}\right\}$
What if the array has 900 elements equally distributed in the nodes?

Odd-even transposition sort

Initially: processor, P_{i}, stores x_{i} Each $P_{i}, i=0, \ldots, p-1$, executes
For $k=1$ to $k=p$

Message passing??
Correct values?
if $\left(i+k\right.$ is odd) and $(i>0)$, then $x_{i}=\max \left\{x_{i}, x_{i-l}\right\}$
else if $\left(i+k\right.$ is even) and $(i<p-1)$ then $x_{i}=\min \left\{x_{i}, x_{i+1}\right\}$
Result: $x_{0}<\ldots<x_{p-1}$

Sorting an input stream of values

Initially: P_{i} stores $x_{i}=$ infinity

Sorting on tree-connected processors

Initially: each leaf node stores a value
Upward phase: propagates values upwards so that they reach the root in sorted order

Downward phase: send the values back to the leaves
Result: the values at the leaves are sorted

Example:

Data broadcasting on p processors (recursive doubling)

Each processor, $j=0, \ldots, p-1$ executes
For $k=0, \ldots$, ceiling $(\log p)-1$
if $\left(j<2^{K}\right)$ and $\left(j+2^{k}<p\right)$ copy $B[j]$ into $B\left[j+2^{k}\right]$.

Matrix multiplication

On a single processor
for $i=0, \ldots, m-1$

$$
\begin{gathered}
\text { for } j=0, \ldots, m-1 \\
c[i, j]=0
\end{gathered}
$$

for $k=0, \ldots, m-1$
$c[i, j]=+a[i, k]{ }^{*} b[k, j]$

On $\boldsymbol{m}^{\mathbf{2}}$ processors
Each processor $(i, j), \quad 0<=i, j<=m-1$, executes

$$
\begin{aligned}
& c[i, j]=0 \\
& \text { for } k=0, \ldots, m-1 \\
& \quad c[i, j]=+a[i, k] * b[k, j]
\end{aligned}
$$

- What if we do not have a shared memory??
- What if the number of processors, $p=m$ and not m^{2} ??
- What if $p=m / q$??

EXAMPLE: 32x32 matrices using 4 processors

Numerical 2D mesh algorithms
Matrix Vector multiplication

$$
\begin{aligned}
& \text { for } i=0, \ldots, m-1 \\
& y[i, j]=0 \text {; } \\
& \text { for } j=0, \ldots, m-1 \\
& y[i, j]=+a[i, j] * x[j] ;
\end{aligned}
$$

Time to completion for an $m \times m$ problem on $p=m$ processors is $2 m-1$

$$
\begin{array}{|llll}
\hline a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3}
\end{array} \quad \quad \begin{aligned}
& x_{0} \\
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned}=\begin{aligned}
& y_{0} \\
& y_{1} \\
& y_{2} \\
& y_{3}
\end{aligned}
$$

May repeat for multiple vectors

Matrix-Matrix multiplication

Time to completion for $m \times m$ matrices on $p=m^{2}$ processors is $3 m-2$

On a ring with $p=m$ processors, we can finish matrix-vector multiplication in m steps (what is the speedup?).

Each element $a_{i, j}$ can be a $k \times k$ sub-matrix and each x_{i} and y_{i} can be a k-dimensional sub-vector (here $m=k p$. What is the speedup?)

On a torus with $p=m^{2}$ processors, we can finish matrix-matrix multiplication in m steps (what is the speedup?).

Solution of diagonal systems


```
a00X0
a}\mp@subsup{\textrm{a}}{10}{}\mp@subsup{\textrm{x}}{0}{}+\mp@subsup{\textrm{a}}{11}{}\mp@subsup{\textrm{x}}{1}{}=\mp@subsup{b}{1}{
a}\mp@subsup{a}{20}{}\mp@subsup{x}{0}{}+\mp@subsup{a}{21}{}\mp@subsup{x}{1}{}+\mp@subsup{a}{22}{}\mp@subsup{x}{2}{
= b
am-1,0}\mp@subsup{x}{0}{}+\mp@subsup{a}{m-1,1}{}\mp@subsup{x}{1}{}+\cdots+\mp@subsup{a}{m-1,m-1}{}\mp@subsup{x}{m-1}{}=\mp@subsup{b}{m-1}{
```


Example

$$
\begin{array}{ll}
a_{0,0} x_{0} & =b_{0} \\
a_{1,0} x_{0}+a_{1,1} x_{1} & =b_{1} \\
a_{2,0} x_{0}+a_{2,1} x_{1}+a_{2,2} x_{2} & =b_{2} \\
a_{3,0} x_{0}+a_{3,1} x_{1}+a_{3,2} x_{2}+a_{3,3} x_{3}=b_{3}
\end{array}
$$

Solution

$$
\begin{aligned}
& x_{0}=b_{0} / a_{0,0} \\
& x_{1}=\left(b_{1}-a_{1,0} x_{0}\right) / a_{1,1} \\
& x_{2}=\left(b_{2}-a_{2,0} x_{0}-a_{2,1} x_{1}\right) / a_{2,2} \\
& x_{3}=\left(b_{3}-a_{3,0} x_{0}-a_{3,1} x_{1}-a_{3,2} x_{2}\right) / a_{3,3}
\end{aligned}
$$

$$
\begin{array}{ll}
x_{0}=b_{0} / a_{0,0} \\
x_{1}=\left(b_{1}-a_{1,0} x_{0}\right) / a_{1,1} \\
x_{2}=\left(b_{2}-a_{2,0} x_{0}-a_{2,1} x_{1}\right) / a_{2,2} \\
x_{3}=\left(b_{3}-a_{3,0} x_{0}-a_{3,1} x_{1}-a_{3,2} x_{2}\right) / a_{3,3} \\
& \\
\begin{array}{cl}
x_{3}-x_{2}-x_{1}-x_{0} \\
\text { Place-holders for the } \\
\text { values to be computed }
\end{array} &
\end{array}
$$

Routing problems

- Routing a single message
- Permutation routing
- Multicasting and broadcasting (one to many)
- Reduction or combine operations (many to one)
- All-to-all broadcasting (many to many)
- Personalized all-to-all (scatter-gather or gossiping)
- Data packing and compaction

Terminology for routing problems

- Static: packets to be routed are all known before routing starts
- Dynamic: packets are created dynamically
- Off-line: routing decisions are pre-computed and stored in routing tables
- On-line: routing decisions are computed on-line
- Oblivious: routes depends only on source and destination
- Adaptive: routes are determined based on condition of the environment (link or node congestion, faults, delay,)
- Deflection routing: if shortest path is congested, use some detour (hot potato routing).

Switching schemes

- Packet switching (store and forward)
- Circuit switching
- Wormhole switching (routing)
- Packet broken into FLITs
- Buffering FLITs
- Header FLIT sets a "virtual circuit"
- Tail FLIT destroy the virtual circuit

- Latency for a message depends on the time to transfer (and buffer) a flit (f), the number of flits (m), as well as the number of hops (h).
- Latency is much lower than that for packet switching (depends on the time to transfer and buffer a packet $(m f)$ and the number of hops (h).

Handling conflict in wormhole routing

- Virtual cut-through = wormhole routing with buffering of blocked Flits.
- Dropped messages are dealt with by higher layers protocols
- Should prevent "LIVE-LOCK" and "DEAD-LOCK" when using deflection routing (or any other adaptive routing).

Handling deadlock in wormhole routing

- Deadlock occurs when there is a circular waiting on some resources (in this case, buffer space)
- Deadlock occurs when there is a
 circular waiting on some resources (in this case, buffer space)
- Deadlock detection (how and what to do when detected?)
- Deadlock avoidance (the resource dependence graph should be cycle-free).

Resource dependence graph in wormhole routing

- Buffers (at either end of a communication link) is the resource
- The resource graph:
- a node for each link in the network
- an edge from node i to node j if the routing allows a message to cross link j after link i.

Routing on 2D meshes, in general, is not deadlock free.

Row-first routing is deadlock free

Deadlock free routing in meshes

If you do not want to restrict routing to "row first", then you need to use two virtual channels for each communication links.

Two buffers
(one for each channel)

- A message starts on Channel 1, and moves to channel 2 when it makes a turn - If no more than one turn, then no deadlock can occur.

A message from a source, s_{q-1}, \ldots, s_{0}, to a destination x_{q-1}, \ldots
., x_{0} has to cross any dimension, b, for which $x_{b} \neq s_{b}$
How many distinct routes there are between any source and destination?

Dimension-order routing

When a node, n_{q-1}, \ldots, n_{0}, receives a message for destination node x_{q-1}, \ldots, x_{0}, it executes the following

- If $x_{k}=n_{k}$ for $k=0, \ldots, q-1$, , keep the message
- Else \{ Find the largest k such that $x_{k} \neq n_{k}$;

Send the message to the neighbor across dimension $k\}$

Visualizing the route by unfolding the hypercube

The unfolded hypercube forms the so called "Butterfly network"

Semigroup operation on a hypercube (EX: global sum)

Initially: each node has a value x
Each node executes the following:
For $j=0, \ldots, q-1$ do
send x to neighbor across dimension j
receive the value sent from the neighbor across dimension j
$x=x+$ the received value
Result: x in each node contains the global sum

Each node executes the following:
Let $N g(i)$ be the neighboring node across dimension i.
If root, set $K=q-1$;
else if received a message from $\mathrm{Ng}(i)$, set $K=i-1$;
For $j=K, \ldots, 0$ do
send the message to $N g(j)$

> Broadcast on a binomial broadcast tree

Adaptive routing in hypercubes

- Use two sets of channels (0-channels and 1-channels)
- Each set of channels cannot form cycles

- A message from a source, s_{q-1}, \ldots, s_{0}, to a destination x_{q-1}, \ldots, x_{0} has to cross any dimension, b, for which $x_{b} \neq s_{b}$
- First, use 0-channels to cross those dimensions for which $s_{b}=0$ and $x_{b}=1$
- Then, use 1-channels to cross those dimensions for which $s_{b}=1$ and $x_{b}=0$.

Multistage Interconnection Networks (MINs)

A modular way of building large switches from smaller switches

Example: 16x16 switch using 32 switches organized as 4 columns of 8 switch. Each switch is a 2×2 switch.

Can also be used to connect processors, each with its own memory (in a distributed memory system)

SIMD modes (synchronized communication):

Either use message routing and synchronize processors at each step, or set the switches before sending data (circuit switching).

MIMD mode (unsynchronized communication):
Use circuit switching, packet switching (without synchronization), or wormhole routing (virtual circuit switching).

Examples of MINs connecting 2^{q} inputs to 2^{q} outputs (using q stages of 2×2 switches):

A butterfly network (unfolded hypercube)

The perfect shuffle and the exchange functions
$\operatorname{Shuffle}\left(x_{q-1}, x_{q-2}, \ldots, x_{0}\right)=x_{q-2}, \ldots, x_{0}, x_{q-1}$
$\operatorname{Exchange}\left(x_{q-1}, x_{q-2}, \ldots, x_{0}\right)=x_{q-1}, x_{q-2}, \ldots, \bar{x}_{0}$

Fig. 15.16. Shuffle, exchange, and shuffle-exchange

- If 2×2 switches are used to build an $N \mathrm{x} N$ switch (to connect N processors $-N$ being a power of 2), we need at least $\log N$ stages.
- Number of 2×2 switches $=$
- If synchronous mode
- Each switch is set to either cross or straight
- A configuration $=$ a specific setting of the 2×2 switches
- How many possible configurations
- Each configuration corresponds to a permutation (one to one communication pattern)
- A $\log N$ stage MIN cannot realize all possible permutations (why?)
- A MIN that cannot realize all permutations is called Blocking.

Routing in an OMEGA network

To get from $s_{q-1}, s_{q-2}, \ldots, s_{0}$ to $x_{q-1}, x_{q-2}, \ldots, x_{0}$

- Do q shuffles
- After each shuffle, do an exchange to match the corresponding destination bit

```
Source
Destination
Positions that differ
Route {1011011 Shuffle to 10110110 Exchange to 10110111
    10110111 Shuffle to 01101111
    01101111 Shuffle to 11011110
    11011110 Shuffle to 10111101
    10111101 Shuffle to 01111011 Exchange to 01111010
    01111010 Shuffle to 1111010\underline{0}\mathrm{ Exchange to 11110101}
    11110101 Shuffle to 11101011
    11101011 Shuffle to 11010111] Exchange to 1101011\underline{0}
```


Routing in an OMEGA network

Example: to route from source 101 to destination 110 (xor $=011$)
$101 \underset{\text { shuffle }}{\rightarrow} 011 \rightarrow 011 \underset{\text { shuffle }}{\rightarrow} \underset{\text { straight }}{\rightarrow} \underset{\substack{\text { exchange } \\ \text { cross }}}{\rightarrow} \underset{\text { shuffle }}{\rightarrow} \quad \begin{gathered}\text { exchange } \\ \text { cross }\end{gathered}$

Routing in an OMEGA network

Example: to route from source 010 to destination 100 010 xor $100=110=($ cross, cross, straight $)$
Route: cross at level 0, cross at level 1, straight at level 2

How is routing in the following OMEGA network different?

Capabilities of MINs for realizing arbitrary permutations:

- Blocking networks: cannot realize an arbitrary permutation without conflict -- for example, Omega can realize only $n^{n / 2}$ permutations.
- Non-blocking networks: can realize any permutation on-line -- for example, cross-bar switches.
- Re-arrangeable networks: can realize any permutation off-line -for example, a Benes network can establish any connection in a permutation if it is allowed to re-arrange already established connections.

The Benes network

Can be built recursively -- an $n \times n$ Benes is built from two ($n / 2 \times n / 2$) Benes networks plus two columns of switches.

A 2×2 Benes network

A 4x4 Benes network

An 8x8 Benes network

A 16x16 network Benes network

To realize a permutation $\left(i, o_{i}, i=0, \ldots, n-1\right)$ in an $n \times n$ Benes network:

- For each connection $\left(i, o_{i}\right)$, determine whether it goes through the upper or lower $\mathrm{n} / 2$ Benes.
- Repeat this process recursively for each of the $n / 2$ networks.
- Start with $k=0$ and (k, o_{k}) going through the upper Benes,
- If o_{k} shares a switch at the last column with o_{m}, then route (m, o_{m}) through the lower Benes.
- If j shares a switch at the first column with m, then route $\left(j, o_{j}\right)$ through the upper Benes.
- Continue until you get an input that shares a switch with input 0 .
- If there are still unsatisfied connections, repeat the looping.

Example for establishing a permutation:

$(0,4)$ upper,
$(6,5)$ lower,
$(7,1)$ upper,
$(1,0)$ lower,
$(2,3)$ upper,
$+\quad(4,2)$ lower,
$(5,7)$ upper,
$(3,6)$ lower,

Fat tree networks

Eliminates the bisection bottleneck of a binary tree

A 16-node fat tree networks
 using 2×2 bidirectional switches

2×2 bidirectional switch $=4 \times 4$ uni-directional crossbar

Possible routes

Routing in a fat tree

- multiple paths
- un-equal path lengths

A fat tree networks using 4×4 bidirectional switches

Routing in a fat tree

source $\quad s_{q-1}, s_{q-2}, \ldots, s_{0}$
destination $x_{q-1}, x_{q-2}, \ldots, x_{0}$
-Find smallest k such that $s_{i}=x_{i}, i=k+1, \ldots, q-1$
(if no such k exists, then $k=q-l$)

- Route arbitrarily up the tree to a switch in stage k
- Route down the tree as follows:
at stage $i, i=k, \ldots, 0$
if $\mathrm{x}_{\mathrm{i}}=0$, route to upper port else route to lower port

Examples $(q=4)$:

$$
0011 \rightarrow 1110 \quad(k=3)
$$

$$
1000 \rightarrow 1100 \quad(k=2)
$$

A Clos network (shown for $p=4$)

Embedding task graphs into processors

Embedding a logical topology into a physical topology

Embedding a seven-node binary tree in 2D meshes of various sizes

Embedding $=$ node mapping + edge mapping

Properties of embeddings

In the examples in the last slide

$$
3 \times 3 \quad 2 x 4 \quad 2 \times 2
$$

Dilation: length of the longest path to which a logical edge is mapped $\quad 1 \quad 2 \quad 1$
Congestion: maximum number of logical edges mapped onto one physical edge

Load Factor: maximum number of logical nodes mapped onto one physical node

Expansion: ratio of the number of nodes in the two topologies
$9 / 7 \quad 8 / 7 \quad 4 / 7$ Why is each of the above factors important?

Embedding a linear array into a hypercube

Binary Gray code (Hamming distance between any two

 code words = 1)| 0 | 00 | 000 | 0000 |
| :---: | :---: | :---: | :---: |
| 1 | 01 | 001 | |
| | 11 | 011 | 0011 |
| | 10 | 010 | 0010 |
| | | 110 | 0110 |
| | | 111 | 0111 |
| | | 101 | 0101 |
| | | 100 | 0100 |
| | | | 1100 |
| | | | 1101 |
| | | | 1111 |
| | | | 1110 |
| | | | 1010 |
| | | | 1011 |
| | | | 1001 |
| | | | |

Embedding a 2D array into a hypercube

Theorem: we can embed a $2^{a} \times 2^{b}$ array into a $(a+b)$-dimensional hypercube with dilation 1.

Embedding a complete binary tree into a hypercube

Theorem: we cannot embed a $2^{q}-1$ complete binary tree in a q-dimensional hypercube with dilation 1 .
Proof: first divide the nodes in the cube to odd nodes (those with an odd number of 1's in the address) and even nodes (those with an even number of 1 's in the address). To preserve unit dilation when embedding the tree, more than half the nodes need to be even (or odd) nodes. This is not possible.

Embedding a double rooted tree into a hypercube

Theorem: we can embed a 2^{q} double-rooted complete binary tree in a q-dimensional hypercube with dilation 1 .

Will not provide a general proof but will give you an example for the embedding in the case of 8 nodes.

Note: embedding a double-rooted tree with dilation 1 is equivalent to embedding a sinngle rooted tree with dilation 2 .

Cache coherence in SMP's

Time	Event	Cache Contents for CPU A	Cache Contents for CPU B	Memory Contents for location X
0				1
1	CPU A Reads \mathbf{X}	$\mathbf{X}=1$		1
2	CPU B reads \mathbf{X}	$\mathbf{X}=1$	$\mathbf{X}=1$	1
$\mathbf{3}$	CPU A stores $\mathbf{0}$ into \mathbf{X}	$\mathbf{X}=0$	$\mathbf{X}=1$	0

Approaches to cache coherence

- Do not cache shared data
- Do not cache writeable shared data
- Use snoopy caches (if connected by a bus)
- If GMSV not connected by a bus or DMSV (physically distributed memory), then need another solution - directory-based protocols.

Snooping cache coherence protocols

- Each processor monitors the activity on the bus
- On a read miss, all caches check to see if they have a copy of the requested block. If yes, they supply the data (will see how).
- On a write miss, all caches check to see if they have a copy of the requested data. If yes, they either invalidate the local copy, or update it with the new value.
- Can have either write back or write through policy.

Example: Write Invalidate

Processor Activity	Bus Activity	Cache Contents for CPU A	Cache Contents for CPU B	Memory Contents for location X
				0
CPU A Reads X	Cache Miss for X	0	0	0
CPU B Reads X	Cache Miss for X	0	0	
CPU A writes 1 to X	Invalidation for X	1	1	0
CPU B Reads X	Cache Miss for X	1		0

Example: Write update

Processor Activity	Bus Activity	Cache Contents for CPU A	Cache Contents for CPU B	Memory Contents for location X
				0
CPU A Reads X	Cache Miss for X	0	0	0
CPU B Reads X	Cache Miss for X	0	1	0
CPU A writes 1 to X	update for X	1	1	1
CPU B Reads X	Cache hit for X	1	1	1

An Example Snoopy Protocol

- Invalidation protocol, write-back cache
- Each block of memory is in one state:
- Clean in all caches and up-to-date in memory (Read-Only),
- Dirty in exactly one cache (Read/Write), OR
- Not in any caches
- Each cache block is in one state:
- Shared : block can be read (clean, read-only)
- Exclusive : cache has only copy, its writeable, and dirty
- Invalid : block contains no data
- Read misses: cause all caches to snoop bus
- Writes to clean blocks are treated as misses -- invalidates all other caches

Snoopy Cache State Machine (CPU Events)

Snoopy Cache State Machine (Bus Events)

Example

- Assumes A1 and A2 map to same cache block B.
- Initial cache state is invalid

Event	In P1's cache	In P2's cache
P1 writes 10 to A 1	$\mathrm{~B}=$ invalid $=10$ (exclusive)	$\mathrm{B}=$ invalid
P1 reads A 1	$\mathrm{~A} 1=10$ (exclusive)	$\mathrm{B}=$ invalid
P 2 reads A 1	$\mathrm{~A} 1=10$ (shared)	$\mathrm{A} 1=10$ (shared)
P2 write 20 to A 1	$\mathrm{~B}=$ invalid	$\mathrm{A} 1=20$ (exclusive)
P 2 writes 40 to A 1	$\mathrm{~B}=$ invalid	$\mathrm{A} 2=40$ (exclusive)

Directory-based coherence protocols

- For shared address space over physically distributed memory
- A controller decides if access is Local or Remote
- A directory that tracks state of every block in every cache (dirty, clean, ...)
- Info per memory block vs. per cache block?
- PLUS: In memory => simpler protocol (centralized/one location)
- MINUS: In memory => directory is f (memory size) vs. f (cache size)
- With each block in each memory keep a state:
- Shared: cached in one or more processors, and memory is up-to-date
- Uncached: no processor has it; not valid in any cache)
- Exclusive: 1 processor (owner) has data; memory out-of-date
- In addition to the state, must track which processors cached the block
- The owner (home) of each block in a cache is stored with the block.

Directory protocols

- No bus and don't want to broadcast:
- interconnect no longer single arbitration point
- all messages have explicit responses
- Keep it simple(r):
- Processor blocks until access completes
- Assume messages received and acted upon in order sent
- Typically 3 processors involved
- Local node where a request originates
- Home node where the memory location of an address resides
- Remote node has a copy of a cache block
- Example messages on next slides:
$\mathrm{P}=$ local node, $\mathrm{H}=$ home node, $\mathrm{A}=$ address (block)

Directory Protocol Messages

