Evolution of parallel hardware

* 1/O channelsand DMA

* Instruction pipelining

* Pipelined functional units

* Vector processors (ILLIAV 1V was built in 1974)

» Multiprocessors (cm* and c.mmp were built in the 70's)

» Massively parallel processors (Connection machine, T3E,
Blue Geng, ...)

» Symmetric Multiprocessors
* Cluster computing

» Multi-core processors

» Chip Multi-Processors

Two schools:

« Automatic detection of parallelism in seria programs and
automatic distribution of data and computation.

» User specified parallelism (data distribution, computation
distribution, or both).

Problems:

e Itishardtothink “paralel.” (isit ??7?)

» The dusty-deck problem (software inertia) and the absence of good
toolsfor parallelizing serial programs.

* Thel/O bottleneck.

 Shrinking government funding with lack of commercial success
(changing trend??).

« Communication and synchronization overhead

* Execution time:
1) Communication time
2) Computation time.

Computation 8§ - deal
time .
Computation
6+ speedup
4 Actual
Solution time
Com- 72 1
munication
time
. I I . I I I I
0 4 8 12 16 0 4 8 12 16
Processors Processars

Tradeoff between computation and communication

Flynn’s har dwar e taxonomy:

Looks at instructions and data parallelism. Best known of
many proposals.

S S » Sfor single * | for instruction
M M| D * M for multiple « D for data.

* An SISD machineisaseria computer.

* An SIMD machineis avector machine or alockstep machine
with multiple units and one instruction stream.

* An MIMD machine is composed of different units, each
having its own instruction stream.

* An MISD machine — need to be innovative to defineiit.

Taxonomy of MIMD machines.

» According to physical memory layout:
GM = global memory , DM = distributed memory.

» According to memory directly addressable by processors:
SV = shared variables -- a single shared address space,
MP = message passing — each processor has its own space.

Note: Shared address space machines may be
UMA = uniform memory access, or NUMA = non-UMA.

DMSV = Memory physicaly distributed but logically shared.

GMSV = physically and logically shared memory — usually called
symmetric multiprocessors (SMP) — usually use common bus.

DMMP = each processor has access to its local memory — datais shared
through sending and receiving messages.

©PP P

I nter connection

|Mem| |Mem| |Mem| |Mem|

GM-8v

[wen] [wen] [em] [wem] Cre) (re) () ()

POPP
+++ |M|em||M|em||M|em||M|em||

| nter connection I nterconnection

DM-MP DM-SV

Which oneis NUMA and whichisUMA?

Speedup and efficiency.

+ For agiven problem A, of size n, let t,(n) be the execution time on p
processors, and t,(n) be the execution time (of the best algorithm for A) on
one processor. Then,

Speedup S () = t; (n) / t,, (n)
Efficiency E;(n) = S,(n)/p
Speedup is between 0 and p, and efficiency is between 0 and 1.
* Linear Speedup meansthat Sislinear with p (perfectly scalable machine)

« If speedup isindependent of n, then the agorithmis said to be perfectly
scalable.

* Minsky’s conjecture:

Speedup islogarithmicin p

Amdahl’slaw.

Let f bethe fraction of a program that has to be performed seriadly, then,
using p processors, the maximum possible speedup is:

S+
f+(1-f)/p

Hence, even with unlimited number of processors, the speedup cannot be
larger than 1/ f.

« Algorithms for the same problem may have different values of f.

« The above formulaignores the effect of n on f (serial portion of
code may be fixed, independent of the size of the problem).

« Ignores the effect of memory:
Negative effect — conflict.
Positive effect ——— more memory, cache and registers.

* |gnores the effect of communication.

Critical path in task graphs: ’Q\
1) In applications with dependent operations,

speedup depends on the longest path in the ? S
dependency graph.

2) May have node labels (computation time) Q\\
and link labels (communication time). O

----------- 16 numbers to be added --------- -

. PPy

Scheduling task graphsto processors
Example: List scheduling

Ready tasks Q

wait Q:.\

* Move a task to the ready Q when all
predecessors finish execution
» Keep the ready Q ordered by some priority:
* Depth of the task
*Number of descendents
* The depth of a task is the length of the
longest path from the task to the last task in
the graph.

10

List scheduling

time 1 (2|3 (4|5(|6]|7(8]29

procl (1|2 |3|4)|6]|8]|10]|12]| 13

proc2 51719 |11

11

Nodes with un-equal execution times

vl
e time 1|12|3|4(5|6|7]|8
/ \/4 Procl |vl|vl|{v3|v3|v4|V5|V5| V6
v2

@ v3 @ Proc 2 v2 | v2 | v2
e List scheduling
V5 time 1|12 (3(4[5|6]| 7|8
Procl |vl|vl|v3|v3|Vv5]| V5| V6
v6 @ / Proc 2 va | v2 | v2|v2

optimal scheduling

12

Some simple architectures
[Pol—{ P —{Pe P | Pa |—{Ps —{ P }—{P1 |—{7s]
|______7

Linear arrays and rings

BT N of)
IRy
Meshes and torii Tree architectures

13

Hypercube interconnections

* Aninterconnection with low diameter and large bisection
bandwidth.

* A g-dimensiona hypercube is built from two (g-1)-dimensional
hypercubes.

Dimension O

14

For ag dimension hypercube, calculate

» The number of nodes and the number of edges
» The node degree
» The diameter

* The bisection bandwidth
15

» Each node in a g-dimension hypercube has a g-bits identifier
Xg1 10+ X104 %

* ldentifiers of nodes across adimension j differ in the jt bit
(have aunit Hamming distance)

» Nodes connected by alink are called neighbors
16

Network parameters

Number of nodes (p)
Number of links
Interconnection graph

Network characteristics

Node degree = number of neighbors

Diameter = the maximum distance between any two nodes

Bisection width (BW) = the minimum number of links that
partition the network into two, almost equal, halves.

linear ring 2D mesh 2D torus Binary tree

degree

diameter

BW

17

Examples of parallel algorithms

18

Finding the maximum on alinear array

[Bo Py —{Po | —{Bs [Pa }—{Ps [P | {P: | 7]
E 8 [

)] . < Initial

values

Maximum
< identified

W owWwiD o o b
[T =D = RV JF- T+ = |
=R =Rt < = =)

4
9
9
9
9
9

Wit o oooeon
wow o ite o o
WOL WD D o
W W Www ol
W WO o w oW

Initially: processor, P, , stores x;

Each P, , i=0,...,p-1, executes cedUn??
For k=1to k=p-1 Speedup?:
X = max{X.y, %, %41}
Result: P; storesmax{x,, ..., X,}

What if the array has 900 elements equally distributed in the nodes?

19

Odd-even transposition sort

[P (P —{Pa J—{Ps | P [P |—{Ps]

[Po]—{P1]

-5 2 Ppd ca P> 7 9 4
ks ‘P ‘P’ . B b
—2 P> 8 6 7 1 9 4
‘g i ‘P! E B .
—2 3 5 6 1 8 4 TP ©
8 7 9

2T T 1
—2 gl gl qPT tqPo
4 s <>

2“1 3

-1 =g 1 e 1P a7 S Pp-©

Initially: processor, P;, stores x;
Each P, , i=0,...,p-1, executes
For k=1tok=p '
if (i+kisodd) and (i > 0), then x, = max{x , X;_; }

elseif (i+kiseven) and (i < p-1) then x, = min{x , X, }
Result: X, < ... < Xo1 20

Sorting an input stream of values

328637

;
[]
e
?
?
!
|
i
[

s2063 79 @A - I
sesears P - H H T H H H]

szecar PP I { H]

s2ees Lo P [{1

N EN o o O o B e o B o B e o B

sze i PP PP T H H

s L P -

Initially: P, storesx = infinity s FP PP - - -]
Input: p valuesto processor P, GG
. e P e -0

Each P, ,i=0,...,p-1, executes ECEE P]
Repeat (p-i) times B e T G O W
receéiveavaue,y, fromP,, ECFEFEFEEFTEH-0]
send max{ Xy} to P, -2 OO

% = min{ x .y} - e

’ S o 3 o I e N e Bl ol o K e El e B

Result: X5 < ... < X5 LR e {7 e 5]

)
I

Sorting on tree-connected processors

Initially: each leaf node stores avalue

Upward phase: propagates values upwards so that they
reach the root in sorted order

Downward phase: send the values back to the leaves
Result: the values at the leaves are sorted

Example:

Data broadcasting on p processors
(recursive doubling)

B

vy

S5

= B =R Y = Y U R -

o

Each processor, j =0, ..., p-1 executes
Fork=0, ..., ceiling(log p) - 1
if (j<2K)and (j+2k<p) copy B[j]into B[j+2¢].

23

Matrix multiplication

On a single processor
fori=0,..,m-1

forj=0, ..., m-1
c[ij]=0

fork=0, ..., m-1 i I
clijl=+alik]*b[k,j]

On m? processors
Each processor (i,j), 0<=i,j <= m-1, executes
c[ij]=0
fork=0, ..., m-1
clij]=+alik]*b[k,j]

* What if we do not have a shared memory??
» What if the number of processors, p = m and not m2 ??
* What if p =m/q ?? 24

EXAMPLE: 32x32 matrices using 4 processors

fori=0,..,31
forj=0,..,31
c[i,j]=0
fork=0,...,31

clijl=+alik]*b[kj]

25

Numerical 2D mesh algorithms

Matrix Vector multiplication

fori=0,..,m-1
y[ij]=0;
forj=0,...,m-1

ylijl=+alij]*x[j];

Delay

00—
(00

13210

220

201
211
221

ayy

212
222

a3z

213
223

a3

*a| |Yo

5] Y1
> =

*2 ¥a

%3 Y3

26

Row © of

Matrix A
A13
SApy 2132
Apz 211
Apl 210

200 -

Hy Xn Xy xo—." m

¥o -

Time to completion for an m x m problem on p = m processors is 2m-1

ag3
g0
a31
30

233
agi Col 0O of
asp Matrix A

5
2

¥z

27

Q3| Yo
Q3| Y1
Q3| Y2
833| VY3

Yo
Y1
Y2
Y3

28

May repeat for multiple vectors

Row O of
Matrix A
Col 0 of

213 322 431 M:trixok

Ky XEp Xy x0+
¥ o Xy Xy - _p—
\

29

Matrix-Matrix multiplication

Row 0 of

233
Matrix A a23 832 sl) o
213 A3z 43 -
203 F1z Az 239
:02 211 azp -
Col 0 of o 10

200

bap bzp b1o boo —'& il ﬁ &
bag b2y b13 ko1 - —Pw
b3z baz b1z Pz - - —P—i— “—i

__ c37
b33 by b3 ko3 - - - —pf

il

Matrix B

Time to completion for m x m matrices on p = m? processors is 3m-2

30

On a ring with p = m processors, we can finish matrix-vector
multiplication in m steps (what is the speedup?).

Row 0 of Col O of
Matrixz A Matrixz A

[Pz]

Each element a;; can be a k x k sub-matrix and each x; and y; can be
a k-dimensional sub-vector (here m = k p. What is the speedup?)

31

On a torus with p = m? processors, we can finish matrix-matrix
multiplication in m steps (what is the speedup?).

vV VvV V| Ny

3| Rz (][®21]]|*=20
|. byoTR2a T1P10|T|Roo
| | 1 1
I 1 T 1

=1 a =1 a
oz(l 211 ||[F20]][F23
|' boq [T 1E1a |[[Po1 [T]P21
| | T T

ag1|| |210||[223]] [322
|' byaTPoz TIP3z |T|P22

a a =1 a
ool| [R13||[R22][221
bos|| |Paz|||P22]|| P13

32

Solution of diagonal systems

200X0 = bo
a10¥og + apXa = Db
a20Xx0 + a21X1 + azXz = b2
am-1,0X0 + ap-1,1%¥1 + ... + Ap-1,m-1¥Xm-1 = bp-1
Example

8,0 %o =b,

Qo X T A Xy =b,

Qo X T A Xt 3, X =b,

830 Xo *t A3q Xy * 83, X, tazy X3=bg

Solution

Xo = by lag,
X, =(by- a0 %)/a,
X =(by- a0 %= 8 X))/ 8y,

Xy =(bg- 830 Xg- 831 X;—83,%X;,) /855

34

Xg = by /lag,

X, =(by- a5 X)/a,

X, =(by- 80 Xg- @1 %)/ 8y,

X3 =(bg- 830 Xg- @31 X;—83,%) /855

Column 0 of
=L = a
22 31 % Matrix A

f <y - - g #COBETREIRE® -z - 2

Place-holdera for the Xy
values to be computed -

Jutputs

Routing problems

Routing a single message

Permutation routing

Multicasting and broadcasting (one to many)
Reduction or combine operations (many to one)
All-to-all broadcasting (many to many)
Personalized all-to-all (scatter-gather or gossiping)
Data packing and compaction

Terminology for routing problems

* Static: packets to be routed are all known before routing starts

» Dynamic: packets are created dynamically

« Off-line: routing decisions are pre-computed and stored in
routing tables

» On-line: routing decisions are computed on-line

* Oblivious: routes depends only on source and destination

» Adaptive: routes are determined based on condition of the
environment (link or node congestion, faults, delay,)

* Deflection routing: if shortest path is congested, use some
detour (hot potato routing).

37

Switching schemes

* Packet switching (store and forward)
* Circuit switching
» Wormhole switching (routing)
* Packet brokeninto FLITs > (> (—
» Buffering FLITs
» Header FLIT setsa“virtual circuit”
e Tail FLIT destroy the virtual circuit

* Latency for a message depends on the time to transfer (and
buffer) aflit (f), the number of flits (m), aswell as the number
of hops (h).

* Latency is much lower than that for packet switching
(depends on the time to transfer and buffer a packet (mf) and
the number of hops (h).

38

Handling conflict in war mhole routing

Z%\ Buffer {Q\. Black
gﬁ%ﬁ@m =

"

* Virtua cut-through = wormhole routing with buffering of
blocked Flits.

» Dropped messages are dealt with by higher layers protocols

* Should prevent “LIVE-LOCK” and “DEAD-LOCK” when using
deflection routing (or any other adaptive routing).

39

Handling deadlock in wormholerouting

» Deadlock occurs when thereisa
circular waiting on some resources
(in this case, buffer space)

» Deadlock occurs when thereisa
circular waiting on some resources
(inthis case, buffer space)

 Deadlock detection (how and what to do when detected?)
 Deadlock avoidance (the resource dependence graph should

be cycle-free).

40

Resour ce dependence graph in wormhole routing

* Buffers (at either end of a communication link) isthe resource
* The resource graph:
 anode for each link in the network
 an edge from nodei to nodej if the routing allows a
message to cross link j after link i.

Routing on 2D meshes, in general, is not deadlock free.
41

Row-first routing isdeadlock free

42

Deadlock freerouting in meshes

If you do not want to restrict routing to “row first”, then you
need to use two virtual channels for each communication links.

Cae

Two buffers
(one for each channel)

A message starts on Channel 1, and movesto channel 2 when it
makes a turn — If no more than one turn, then no deadlock can
OCCuUr.

43

Routing on a hypercube

A message from asource, Sy, - - ., S, to adestination X, , . .
., Xphasto cross any dimension, b, for which x, # s,

How many distinct routes there are between any source and
destination?

Dimension-order routing

When anode, ng, , . .., Ny, receives amessage for destination
node X, , - - - » %o, it executes the following

* If . =nfork=0, ..., 01, , keep the message

* Else{ Find the largest k such that x, # n, ;

Send the message to the neighbor acrossdimensionk} 45

Visualizing the route by unfolding the hypercube

0 dim @~ djml/i_—\\dij//D 0 0
1 1 1
‘A

2 'v 7 2 o
) 29Rows
o (. “
6 .v#‘ O 6 6
U 7 Unfold 7
] 1 = 3 -‘—
q + 1 Columns m" Hypercube

The unfolded hypercube forms the so called “ Butterfly network”
46

Semigroup operation on a hypercube (EX: global sum)

Initially: each node has a value x

Each node executes the following:

Forj=0,...,0-1 do
send x to neighbor across dimension j
receive the value sent from the neighbor across dimension |
X = X + thereceived value

Result: xin each node contains the global sum

a7

Broadcasting in hypercubes
19— 019119
(oo ———(a0 (ot ———(aop (oo (a0
Each node executes the following:
Let Ng(i) be the neighboring node across dimension i.
If root,setK=0g-1;
elseif received a message from Ng(i), set K = i-1 ;

Forj=K,...,0 do
send the message to Ng(j)

Broadcast on a binomial broadcast tree

48

timel

time 2

time 3

time4

Adaptive routing in hypercubes

» Usetwo sets of channels (0-channels and 1-channels)
 Each set of channels cannot form cycles

* A message fromasource, S, - . ., S, to adestination X, , -
Xy hasto cross any dimension, b, for which x, # s,

* First, use O-channels to cross those dimensions for which s, =0
andx,=1

* Then, use 1-channelsto cross those dimensions for which s, = 1

and x, = 0.

50

Multistage I nter connection Networ ks (M INs)

A modular way of building large switches from smaller switches

51

p Processors logap Cohmms of 2-by-2 Switches p Memory Banks
a = 1 2 3 B ooao

0000 N

0004 0001
0010 3 A 0010
0014 0011
0100 2] ‘_‘.‘ 27 0100
0101 0101
0110 5] A 0110
0111 0111
1000 AVAVA = 1000
1001 1001
1010 I 1010
1011 N AL
1100 T 1100
1101 1101
1110 023 77 1110

1111

Example: 16x16 switch using 32 switches organized as 4 columns
of 8 switch. Each switch isa 2x2 switch.

52

Can also be used to connect processors, each with
itsown memory (in a distributed memory system)

}..-
58
—

53

SIM D modes (synchronized communication):

Either use message routing and synchronize processors at each step,
or set the switches before sending data (circuit switching).
MI1MD mode (unsynchronized communication):

Use circuit switching, packet switching (without synchronization),
or wormhole routing (virtual circuit switching).

Circuit-switch
states

Arouting switch

buffers

Examples of MINs connecting 29 inputsto 29 outputs (using q
stages of 2x2 switches):

00— H —O0 00—] T—O0
10— —01 101 L] L] 1
20 —o02 20 /NN /T 2
30+— —03 30U | | 3
4041 —04 40-TVANV\ Y\ ©O4a
5 O— —O05 501 L L Os
60 | —O06 60]] 6
70——— —O7 70—t il 07
A butterfly network An Omega network

(unfolded hypercube)

(multiple shuffle/exchange)

The perfect shuffle and the exchange functions

Shuffle(Xq.1 » Xg2 s -+ s X0) =Xgq2 5 -5 X0 g1

Exchange(xq_l,xq_z, e Xo) =Xq1 s Xg2 1 -

00 0C——O0 0 0
001 1 1 12><g1
010 2 2 2 2
011 3 3 33><23
100 4 4 40 4
101 § 5 5Q>€5
110 6 6 & 3
M1 7T0—07 ?3><87

Shuffle

Unshuffle

Fig. 15.16. Shuffle, exchange,

Exchange

+ Xo
0 0
1 1
2 2
3 3
4 4
i]
6 6
7 i

Shuffle-Exchange

| [0
|00l

Altemate
Structure

and shuffle-exchange

* If 2x2 switches are used to build an NxN switch (to connect N
processors — N being a power of 2), we need at least log N
stages.

* Number of 2x2 switches =

* If synchronous mode

» Each switch is set to either cross or straight

* A configuration = a specific setting of the 2x2 switches

» How many possible configurations

 Each configuration corresponds to a permutation (one to
one communication pattern)

» A log N stage MIN cannot redlize all possible permutations
(why?)

* A MIN that cannot realize all permutationsis called Blocking.
57

1 2 3 0 stage

0 1

1 N —

2

3 ". 8 Routingin a

‘ butterfly network
5 o LI L] [\\/ 5
A‘A The destination a;a, a, 8,

(75 : .‘. . "" is coded in message header

8 —] M 0 Stagei switch

° "X ° — 2z}
10 \ 0 -
11 O When amessage s received:
12 Send to upper port if a =0
13 8 Send to lower portifa =1
%g. 111

58

Routing in an OMEGA network

Togetfroms,;, Sy s SotO Xg1 4 Xg2 s -5 %o
» Do q shuffles

* After each shuffle, do an exchange to match the corresponding

destination bit
Source 01011011
Destination 11010110

Positicons that differ

Route 01011011 shuffle to 10110110 Exchange to 10110111

10110111 shuffle te 01101111
01101111 Shuffle te 11011110
11011110 Shuffle te 10111101

10111101 Shuffle to 01111011 Exchange to 01111010
01111010 Shuffle to 11110100 Exchange to 11110101

11110101 Shuffle to 11101011

11101011 sShuffle to 11010111 Exchange to 11010110

59

Routing in an OMEGA network

0000 M —— 1O 000
O oo1

1—O 010
L —O on1

—1—O 100
L —O 101

ARy

111 O L L

Example: to route from source 101 to destination 110 (xor = 011)

101 -> 011 - 011 » 110 > 111 =-> 111 = 110
shuffle shuffle exchange shuffle exchange
straight Cross Cross

60

Routing in an OMEGA network

000 O M —(O 000
001 —O 001
010 —(O 010
011 —O o011
100 O —QO 100
101 —O 101
110 —O 110
111 —O111

Example: to route from source 010 to destination 100
010 xor 100 = 110 = (cross, cross, straight)
Route: cross at level 0, cross at level 1, straight at level 2

61

How isrouting in the following OMEGA network different?

00— T— 1 F+—00
10— L] L 1
2 O — N 2
30— LAY A 3
40—V \ N\ Y] O4
5 O—LJ L] L] Os
6 O—]]] 6
7 O—L L - 07

62

Capabilities of MINsfor realizing arbitrary permutations:

* Blocking networks: cannot realize an arbitrary permutation without
conflict -- for example, Omega can realize only N2 permutations.

» Non-blocking networks: can realize any permutation on-line -- for
example, cross-bar switches.

» Re-arrangeable networks: can realize any permutation off-line --
for example, a Benes network can establish any connectionin a
permutation if it is allowed to re-arrange aready established
connections.

The Benes networ k

Can be built recursively -- an nxn Benesis built from two
(n/2 x n/2) Benes networks plus two columns of switches.

63

Upper n/2 Benes

Lower n/2 Benes

~o b WN RO
l
~o b WN RO

1r 17 I (¢
A 2x2 Benes network A 4x4 Benes network
64

]
,7I \
—L_| b — L]
/ \
1 1 \
- - \
\
_ 1 1 \
—]| d fe o
! n
— \ i - \
L I s I Y _—
Vil (IR
P S B
I)\ I(\ I
N
1 \\ I_ — - — — -: I’ \‘ l’
— — — —] I—o ‘\: -
) 1 5
— b-4ao-= — ;#--»-\---
o L] L\ A 1
L .
.. P
\
\
_ . . _
\I = [o - .I
T !
D —— — — - |

An 8x8 Benes network

65

D~ e R

2971 Inputs MBows, 2q+ 1 Columns

A 16x16 networ k Benes networ k

66

Torealize apermutation (i, o, , i= 0,..., n-1) in an nxn Benes

network:

* For each connection (i, o;), determine whether it goes through
the upper or lower n/2 Benes.

* Repeat this process recursively for each of the n/2 networks.

* Start with k=0 and (k, o,) going through the upper Benes,

* If o, sharesaswitch at the last column with o, , then route (m,
0,,) through the lower Benes.

* If j shares aswitch at the first column with m, thenroute (j, 0.)
through the upper Benes.

 Continue until you get an input that shares a switch with input O.

* If there are still unsatisfied connections, repeat the looping.

67

Example for establishing a permutation:
(04, (4,2), (3,6), (1,0), (2,3), (6,5), (5,7), (7,2)

; 3

Upper n/2 Benes
2 — — 2
3 — 3
4 — 4
> Lower n/2 Benes >
6 4——o] — 0
7 7

(0,4) upper, (2,3) upper,

(6,5) lower, . (4,2) lower,

(7,1) upper, (5,7) upper,

(1,0) lower, (3,6) lower,

68

Fat tree networks
Eliminates the bisection bottleneck of abinary tree

A

|:| Two representations of a fat tree.

69

A 16-node fat tree networks

0 1 2 3stage

0
1
2
3
4
5
6
6
8
9
10
11
12
13
14
A fat tree networks 15
using 2x2 bidirectional
switches

70

2x2 bidirectional switch = 4x4 uni-directiona crosshar

Possible routes

;)

Only possibilities at stage q-711

0 0 —
1 1|
2 —] 2
3™ 33—
4 — 4 —]
57 5__ |
6 — 6
7 — 7—1 |
8 — g — |
9 — 9 |
10 — 10
11— 11 — |
12 —[—e— 12 —
13— 13 |
14 14—
15 — 15 —
Routing in afat tree A fat tree networks
- multiple paths using 4x4 bidirectional
switches

- un-equal path lengths
72

Routingin afat tree

0 1 2 3 stage

Source S4q,5 4250 S
destination X, 1 , Xgps -5 Xo

-Find smallest k such that s = x; , i=k+1,...,0-1
(if no such k exists, thenk = ¢-1)
- Route arbitrarily up the tree to a switch in stage k
- Route down the tree as follows:
a stagei, i=k, ..., 0
if x; =0, route to upper port
else route to lower port

Examples (q = 4):
0011 -> 1110 (k=3
1000 - 1100 (k=2)

73
pq inputs p switch g switch p switch pq outputs
P kg ———— Joxq i
pXp
: | axq axq |
pXp
: | axq axq | g
. PXp .

Ploxqy — R Lk

A Clos network (shown for p = 4)

74

Embedding task graphsinto processors

75

Embedding alogical topology into a physi ca topol ogy

N JHM
Ny AL

2 o]t 2]

1
“Et_g ik

La]

o]

Embedding a seven-node binary tree in 2D meshes of
various sizes

Embedding = node mapping + edge mapping

76

Properties of embeddings

In the examplesin the last dlide
X3 2x4 2x2

Dilation: length of the longest path to
which alogica edge is mapped 1 2 1

Congestion: maximum number of logical

edges mapped onto one physical edge 2 2
L oad Factor: maximum number of logical 1 1 2
nodes mapped onto one physical node
Expansqn: ratio of the number of nodes o7 87 47
in the two topologies
Why is each of the above factors important?
7

Embedding a @
linear array into
a hypercube

78

Binary Gray code (Hamming distance between any two
codewords = 1)

0 00 000 0 000
1 01 001 0 001
11 011 0 011

10 010 0 010

110 0 110

111 0 111

101 0 101

100 0 100

1 100

1 101

1111

1 110

1 010

1011

1 001

1 000

79

Embedding a 2D array into a hypercube

Theorem: we can embed a 22 x 2°
array into a (a+b)-dimensional
hypercube with dilation 1.

Embedding a complete binary tree into a hypercube

Theorem: we cannot embed a 29 -1 complete binary treein a
g-dimensional hypercube with dilation 1.

Proof: first divide the nodes in the cube to odd nodes (those with
an odd number of 1'sin the address) and even nodes (those with
an even number of 1'sin the address). To preserve unit dilation
when embedding the tree, more than half the nodes need to be
even (or odd) nodes. Thisis not possible.

109

PN &
S "@‘@

81

Embedding a double rooted tree into a hypercube

Theorem: we can embed a 29 double-rooted compl ete binary tree
in ag-dimensional hypercube with dilation 1.

Will not provide ageneral proof but will give you an example for
the embedding in the case of 8 nodes.

Note: embedding a double-rooted tree with dilation 1 is
equivalent to embedding a sinngle rooted tree with dilation 2.

o
®
2 P
ol
o @b -
82

Cache coherencein SMP’s

83

Different caches may contain
different value for the same
memory location.

Processor Processor
Cache Cache

i

!

Processor

i

Cache

Single bus |
Memory 110
Cache Contentsfor Cache Contentsfor Memory Contents
Time Event CPUA CPUB for location X

0 1
1 CPU A Reads X X=1 1
2 CPU B reads X X=1 X=1 1
3 CPUASt)c()resOmto X =0 X=1 o

84

Approachesto cache coherence

» Do not cache shared data

Do not cache writeable shared data
» Use snoopy caches (if connected by a bus)

* If GMSV not connected by abus or DMSV
(physically distributed memory), then need another

solution — directory-based protocols.

85

Snooping cache coher ence protocols

Processor

Processor

Processor

! ! !
Snoop Cache tagl] | Snoop Cache tag[Snoop Cache tag}
tag and data tag and data tag and data
! ! ! ! ! !
| Single bus |
! !

Memory

Each processor monitors the activity on the bus
On aread miss, al caches check to seeif they have a copy of the requested block. If yes,
they supply the data (will see how).
On awrite miss, all caches check to seeif they have a copy of the requested data. If yes,
they either invalidate thelocal copy, or update it with the new value.

Can have either write back or write through policy.

110

86

Example: Write Invalidate

Cache Contentsfor | Cache Contentsfor Memory Contents
Processor Activity BusActivity CPUA CPUB for location X
0
CPU A Reads X Cache Missfor X 0 0
CPU B Reads X Cache Missfor X 0 0 0
CPU A writes1to X Invalidation for X 1 0
CPU B Reads X Cache Missfor X 1 1 1

87

Example: Write update

Cache Contentsfor | Cache Contentsfor Memory Contents
Processor Activity BusActivity CPUA CPUB for location X
0
CPU A Reads X Cache Missfor X 0 0
CPU B Reads X Cache Missfor X 0 0 0
CPU A writes1to X update for X 1 1 1
CPU B Reads X Cache hit for X 1 1 1

88

An Example Snoopy Protocol

« Invalidation protocol, write-back cache
e Each block of memory isin one state:
— Cleanin @l caches and up-to-date in memory (Read-Only),
— Dirty in exactly one cache (Read/Write), OR
— Notinany caches
e Each cacheblock isin one state:
— Shared : block can be read (clean, read-only)
— Exclusive: cache has only copy, its writeable, and dirty
— Invalid : block contains no data
* Read misses: cause all cachesto snoop bus
* Writesto clean blocks are treated as misses -- invalidates all other caches

89

Snoopy Cache State M achine (CPU Events)

CPU read miss
Place read miss on bus

CPU read miss
Place read miss
on bus

CPU write miss
Place write miss on bus

Exclusive

CPU write miss
Place write miss on
bus and write back

replaced block

Note: A read hit does

- not change the state.
CPU write hit

90

Snoopy Cache State M achine (Bus Events)

Write miss (or invalidate)
for this block

Write miss for

this block N o
Write-back block 2 0‘\6“\0
S
xS
Exclusive
(read/write)
91
Example

¢ Assumes Al and A2 map to same cache block B.
« Initial cache state is invalid

B =invalid B =invalid
P1 writes 10 to Al]) i

Al = 10 (exclusive) B =invalid
P1 reads Al] i i

Al = 10 (exclusive) B =invalid
P2 reads Al

Al = 10 (shared) Al = 10 (shared)
P2 write 20 to Al

B =invalid Al = 20 (exclusive)
P2 writes 40 to Al) .)

B =invalid A2 = 40 (exclusive)

92

Directory-based coherence protocols

» For shared address space over physically distributed memory
* A controller decides if access is Local or Remote
* A directory that tracks state of every block in every cache (dirty, clean, ...)
* Info per memory block vs. per cache block?
» PLUS: In memory => simpler protocol (centralized/one location)
* MINUS: In memory => directory is f(memory size) vs. f(cache size)

» With each block in each memory keep a state:
» Shared: cached in one or more processors, and memory is up-to-date
» Uncached: no processor has it; not valid in any cache)
» Exclusive: 1 processor (owner) has data; memory out-of-date

* In addition to the state, must track which processors cached the block
» The owner (home) of each block in a cache is stored with the block.

93

Directory protocols

* No bus and don’t want to broadcast:
« interconnect no longer single arbitration point
« all messages have explicit responses

» Keep it simple(r):
¢ Processor blocks until access completes
* Assume messages received and acted upon in order sent

e Typically 3 processors involved
« Local node where a request originates
* Home node where the memory location of an address resides
+ Remote node has a copy of a cache block

« Example messages on next slides:
P =local node, H = home node, A = address (block)

94

Directory Protocol Messages
Message type Source Destination Msg Content

Read miss P H P, A
If Aisshared or uncached, H sends “ data (P,A)” message and sets Sate(A) = shared,
If Aisexclusive at another processor R, H sends “ Fetch (P,H,A)” messageto R

Write miss P H P, A
If Aisuncached, H sends A to P and sets State(A) = exclusive

If Aisshared, H sends A to P, H sets State(A) = exclusive and send “ Invalidate A” to every remote
cache, R, sharing A,
If Aisexclusive at another processor R, H sends “ Fetch (P,H,A)” messageto R

Invalidate H Remote node, R A
Rinvalidates A in its cache.

Fetch H Remote node, R P,HA
R fetches A and sends “ data(P,A)” and “ data(H,A)” , and Invalidates A in local cache of R

data a processor P PA
A message containing the data in A

95

