Designing the Processor

Datapath & Control (review of Sec. 4.1 – 4.4)

- Simplified to contain only:
 - memory-reference instructions: lw, sw
 - arithmetic-logical instructions: add, sub, and, or, slt
 - control flow instructions: beq
- Generic Implementation:
 - The program counter (PC) supplies instruction address
 - get the instruction from the "instruction memory"
 - the op-code determines exactly what to do.

MIPS instruction format and architecture
Fetching instruction and incrementing PC

1) Fetch and increment PC
2) Read registers
 The control unit should decode the op-code to determine what to do next
 - depends on instruction type
Executing *R-type* instructions (in one cycle)

1) Fetch and increment PC
2) Read registers
3) Execute operation
4) Store result

The control unit issues:
- the corresponding ALU control
- RegWrite signal

Executing *sw* instructions

1) Fetch and increment PC
2) Read registers
3) Calculate memory address (issue ALU control signals – add)
4) Write data to memory (issue MemWrite signal)
Data path conflicts

Path for R-type

Path for sw

1) The second input to the ALU comes from two different places
2) The data2 output goes to two different places
3) The output of the ALU goes to two different places

Reconciling data paths

1) No problems in fanning out one signal to two points

2) Cannot connect two signals to one point (should use multiplexers)

Mux control = 0 for path A
1 for path B
Resolving data path conflicts

1) Fetch and increment PC
2) Read register
3) Calculate memory address (issue ALU control signals – add)
4) Read data from memory (issue MemRead signal)
5) Store data in register (issue RegWrite signal)
Reconciling *R*-type, *sw* and *lw* data paths

1) Fetch and increment PC
2) Read registers
3) Calculate branch condition (issue ALU control signals – subtract)
4) Calculate target address
5) Select next PC depending on the result in 3
Using the op-code from the instruction, the control issues signals to:
- select the operations to perform (ALU, read/write to registers and memory)
- control the flow of data (multiplexor inputs).