Graphic Processing Units (Section 6.6 and Appendix C)

History of GPUs

- VGA (Video graphic array) in early 90’s -- A memory controller and display generator connected to some (video) RAM
- By 1997, VGA controllers were incorporating some acceleration functions
 - mapping, rasterization
- In 2000, a single chip graphics processor incorporated almost every detail of the traditional high-end workstation graphics pipeline
 - Processors oriented to 3D graphics tasks
 - Vertex/pixel processing, shading, texture mapping, rasterization

Contemporary PC architecture

- More recently, processor instructions and memory hardware were added to support general-purpose programming languages
- OpenGL: A standard specification defining an API for writing applications that produce 2D and 3D computer graphics
- CUDA (compute unified device architecture): A scalable parallel programming model and language for GPUs based on C/C++
Basic GPU architecture

- SM = streaming multiprocessor
- TPC = texture processing cluster
- SFU = special function unit

The CPU+GPU architecture

- Streaming Multi-processor (SM). Also called “Shader core”
- Streaming Processor (SP)
total_hits = 0;
sample_points_per_thread = sample_points / num_threads;

for (int i=0; i < num_threads; i++) {
 my_arg[i].t_seed = i; /* can chose any seed – here i is chosen*/
 pthread_create(&p_threads[i], &attr, compute_pi, &my_arg[i]);
}

for (i=0; i < num_threads; i++) {
 pthread_join(p_threads[i], NULL);
 total_hits += my_arg[i].hits;
}

computed_pi = 4.0 * (double) total_hits / ((double) sample_points);

The programming model

Copy data from CPU memory to GPU memory

Launch the kernel

Copy data from GPU memory to CPU memory