History of GPUs

- VGA in early 90’s -- A memory controller and display generator connected to some (video) RAM
- By 1997, VGA controllers were incorporating some acceleration functions
- In 2000, a single chip graphics processor incorporated almost every detail of the traditional high-end workstation graphics pipeline
 - Processors oriented to 3D graphics tasks
 - Vertex/pixel processing, shading, texture mapping, rasterization
- More recently, processor instructions and memory hardware were added to support general-purpose programming languages
- OpenGL: A standard specification defining an API for writing applications that produce 2D and 3D computer graphics
- CUDA (compute unified device architecture): A scalable parallel programming model and language for GPUs based on C/C++
Historical PC architecture
Contemporary PC architecture
Basic unified GPU architecture

- **SM** = streaming multiprocessor
- **MT Issue**
- **C-Cache**
- **I-Cache**
- **SP**
- **SFU**
- **Shared Memory**

TPC = Texture Processing Cluster

SM = Streaming Multiprocessor

SFU = Special Function Unit

ROP = Raster Operations Pipeline

DRAM

L2

Display Interface

Display
Note: The following slides are extracted from different presentations by NVIDIA (publicly available on the web)

For more details on CUDA see:
http://docs.nvidia.com/cuda/cuda-c-programming-guide

(or search for "CUDA programming guide" on Google)
The World Leader in Parallel Processing
Enter the GPU

GPU = *Graphics Processing Unit*

- Chip in computer video cards, PlayStation 3, Xbox, etc.
- Two major vendors: NVIDIA and ATI (now AMD)
Enter the GPU

- GPUs are massively multithreaded manycore chips
 - NVIDIA Tesla products have up to 128 scalar processors
 - Over 12,000 concurrent threads in flight
 - Over 470 GFLOPS sustained performance

- Users across science & engineering disciplines are achieving 100x or better speedups on GPUs

- CS researchers can use GPUs as a research platform for manycore computing: arch, PL, numeric, ...
GTX Titan: For High Performance Gaming Enthusiasts

CUDA Cores: 2688
Single Precision: ~4.5 Tflops
Double Precision: ~1.27 Tflops
Memory Size: 6GB
Memory B/W: 288GB/s
Heterogeneous Computing

- **Terminology:**
 - *Host* The CPU and its memory (host memory)
 - *Device* The GPU and its memory (device memory)
CUDA Programming Model
total_hits = 0;
sample_points_per_thread = sample_points / num_threads;

for (i=0; i < num_threads; i++){
 my_arg[i].t_seed = i; /* can chose any seed – here i is chosen*/
 pthread_create (&p_threads[i], &attr, compute_pi, (void*) &my_arg[i]);
}

for (i=0; i < num_threads; i++){
 pthread_join (p_threads[i], NULL);
 total_hits += my_arg[i].hits;
}

computed_pi = 4.0*(double) total_hits / ((double) (sample_points));
CUDA Accelerates Computing

Choose the right processor for the right task

CPU
Several sequential cores

CUDA GPU
Thousands of parallel cores
```cpp
#include <iostream>
#include <algorithm>
using namespace std;
#define N          1024
#define RADIUS     3
#define BLOCK_SIZE 16
__global__ void stencil_1d(int *in, int *out) {
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
    int gindex = threadIdx.x + blockIdx.x * blockDim.x;
    int lindex = threadIdx.x + RADIUS;
    // Read input elements into shared memory
    temp[lindex] = in[gindex];
    if (threadIdx.x < RADIUS) {
        temp[lindex - RADIUS] = in[gindex - RADIUS];
        temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
    }
    // Synchronize (ensure all the data is available)
    __syncthreads();
    // Apply the stencil
    int result = 0;
    for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
        result += temp[lindex + offset];
    // Store the result
    out[gindex] = result;
}

void fill_ints(int *x, int n) {
    fill_n(x, n, 1);
}

int main(void) {
    int *in, *out;              // host copies of a, b, c
    int *d_in, *d_out;          // device copies of a, b, c
    int size = (N + 2*RADIUS) * sizeof(int);
    // Alloc space for host copies and setup values
    in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS);
    out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
    // Alloc space for device copies
    cudaMalloc ((void **)&d_in,  size);
    cudaMalloc ((void **)&d_out, size);
    // Copy to device
    cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice);
    cudaMemcpy(d_out, out,  size, cudaMemcpyHostToDevice);
    // Launch stencil_1d() kernel on GPU
    stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);
    // Copy result back to host
    cudaMemcpy(in,  d_in, size, cudaMemcpyDeviceToHost);
    // Cleanup
    free(in); free(out);
    cudaFree(d_in); cudaFree(d_out);
    return 0;
}
```

Heterogeneous Computing

Parallel Code
- `__global__ void stencil_1d(int *in, int *out)`
- `__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];`
- `temp[lindex] = in[gindex];`
- `result += temp[lindex + offset];`
- `out[gindex] = result;`

Serial Code
- `fill_ints(int *x, int n) {
 fill_n(x, n, 1);
}`

Serial Code
- `void fill_ints(int *x, int n) {
 fill_n(x, n, 1);
} `

Parallel Code
- `__global__ void stencil_1d(int *in, int *out)`
- `__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];`
- `temp[lindex] = in[gindex];`
- `result += temp[lindex + offset];`
- `out[gindex] = result;`
1. Copy input data from CPU memory to GPU memory
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
CUDA Kernels: Parallel Threads

- A **kernel** is a function executed on the GPU as an array of threads in parallel.
- All threads execute the same code, can take different paths.
- Each thread has an ID:
 - Select input/output data
 - Control decisions

```c
float x = input[threadIdx.x];
float y = func(x);
output[threadIdx.x] = y;
```
CUDA Kernels

Threads are grouped into blocks
Blocks are grouped into a grid
CUDA Kernels: Subdivide into Blocks

- Threads are grouped into **blocks**
- **Blocks are grouped into a grid**
- A kernel is executed as a **grid of blocks of threads**
Kernel Execution

• Each kernel is executed on one device
• Multiple kernels can execute on a device at one time

CUDA thread

• Each thread is executed by a core

CUDA thread block

• Each block is executed by one SM and does not migrate
• Several concurrent blocks can reside on one SM depending on the blocks’ memory requirements and the SM’s memory resources

CUDA kernel grid

• Each kernel is executed on one device
• Multiple kernels can execute on a device at one time

CUDA core

CUDA Streaming Multiprocessor

CUDA-enabled GPU
Thread blocks allow cooperation

- Threads may need to cooperate:
 - Cooperatively load/store memory that they all use
 - Share results with each other
 - Cooperate to produce a single result
 - Synchronize with each other
Thread blocks allow scalability

- Blocks can execute in any order, concurrently or sequentially
- This independence between blocks gives scalability:
 - A kernel scales across any number of SMs
Warps

- Blocks are divided into 32 thread wide units called warps. Size of warps is implementation specific and can change in the future.

- The SM creates, manages, schedules and executes threads at warp granularity. Each warp consists of 32 threads of contiguous threadIds.

- All threads in a warp execute the same instruction. If threads of a warp diverge the warp serially executes each branch path taken.

- When a warp executes an instruction that accesses global memory it coalesces the memory accesses of the threads within the warp into as few transactions as possible.
Each block (up to 512 threads) is dispatched to an SM (shader core) as a unit of work: all of its warps run in the core’s pipeline until they are all done.

Each warp (32 threads) execute in locksteps (one single program counter).
SIMT = single instruction multiple threads -- same as SIMD
Hierarchy of Concurrent Threads

- Threads are grouped into thread blocks
- Kernel = grid of thread blocks

By definition, threads in the same block may synchronize with barriers

```
scratch[threadID] = begin[threadID];
__syncthreads();
int left = scratch[threadID - 1];
```

Threads wait at the barrier until all threads in the same block reach the barrier
Heterogeneous Memory Model

Host memory

cudaMemcopy()

Device 0 memory

Device 1 memory
Kernel Memory Access

- **Per-thread**
 - Thread
 - Registers
 - On-chip
 - Local Memory
 - Off-chip, uncached

- **Per-block**
 - Block
 - Shared Memory
 - On-chip, small
 - Fast

- **Per-device**
 - Kernel 0
 - Kernel 1
 - Global Memory
 - Off-chip, large
 - Uncached
 - Persistent across kernel launches
 - Kernel I/O
Physical Memory Layout

- “Local” memory resides in device DRAM
 - Use registers and shared memory to minimize local memory use
- Host can read and write global memory but not shared memory
10-Series Architecture

- 240 *thread processors* execute kernel threads
- 30 *multiprocessors*, each contains
 - 8 thread processors
 - One double-precision unit
- *Shared memory* enables thread cooperation
Execution Model

Software
- Thread

Hardware
- Thread Processor
 - Threads are executed by thread processors
- Thread Block
 - Thread blocks are executed on multiprocessors
 - Thread blocks do not migrate
- Multiprocessor
 - Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

- Grid
 - A kernel is launched as a grid of thread blocks
 - Only one kernel can execute on a device at one time
CUDA Programming Basics

Part I - Software Stack and Memory Management
Any source file containing language extensions, like "<<< >>>", must be compiled with **nvcc**

nvcc is a *compiler driver*
- Invokes all the necessary tools and compilers like cudacc, g++, cl, ...

nvcc can output either:
- C code (CPU code)
 - That must then be compiled with the rest of the application using another tool
- PTX or object code directly

An executable requires linking to:
- Runtime library (**cuda**)
- Core library (**cuda**)
Compiling

CPU/GPU Source

NVCC

PTX Code

Virtual

PTX to Target Compiler

G80

...GPU

Physical

Target code
GPU Memory Allocation / Release

Host (CPU) manages device (GPU) memory

- cudaMalloc(void **pointer, size_t nbytes)
- cudaMemcpy(void *pointer, int value, size_t count)
- cudaFree(void *pointer)

```c
int n = 1024;
int nbytes = 1024*sizeof(int);
int *a_d = 0;
cudaMalloc( (void**)&a_d, nbytes );
cudaMemset( a_d, 0, nbytes );
cudaFree(a_d);
```
Data Copies

```
cudaMemcpy(void *dst, void *src, size_t nbytes,  
enum cudaMemcpyKind direction);
```

- **direction** specifies locations (host or device) of **src** and **dst**
- Blocks CPU thread: returns after the copy is complete
- Doesn’t start copying until previous CUDA calls complete

```
enum cudaMemcpyKind

cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
```

```
cudaMemcpyDeviceToDevice
```
int main(void)
{
 float *a_h, *b_h; // host data
 float *a_d, *b_d; // device data
 int N = 14, nBytes, i ;

 nBytes = N*sizeof(float);
 a_h = (float *)malloc(nBytes);
 b_h = (float *)malloc(nBytes);
 cudaMalloc((void **) &a_d, nBytes);
 cudaMalloc((void **) &b_d, nBytes);

 for (i=0, i<N; i++) a_h[i] = 100.f + i;

 cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);
 cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

 for (i=0; i< N; i++) assert(a_h[i] == b_h[i]);
 free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
 return 0;
}
int main(void)
{
 float *a_h, *b_h; // host data
 float *a_d, *b_d; // device data
 int N = 14, nBytes, i ;

 nBytes = N*sizeof(float);
 a_h = (float *)malloc(nBytes);
 b_h = (float *)malloc(nBytes);
 cudaMemcpy(a_d, a_h, nBytes,
 cudaMemcpyDeviceToDevice);
 cudaMemcpy(b_d, a_d, nBytes,
 cudaMemcpyDeviceToHost,
 cudaMemcpyDeviceToHost);
 for (i=0; i< N; i++) assert(a_h[i] == b_h[i]);
 free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
 return 0;
}
int main(void)
{
 float *a_h, *b_h; // host data
 float *a_d, *b_d; // device data
 int N = 14, nBytes, i ;

 nBytes = N*sizeof(float);
 a_h = (float *)malloc(nBytes);
 b_h = (float *)malloc(nBytes);
 cudaMalloc((void **) &a_d, nBytes);
 cudaMalloc((void **) &b_d, nBytes);
 cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);
 cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);
 for (i=0; i<N; i++) assert(a_h[i] == b_h[i]);
 free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
 return 0;
}
Data Movement Example

```c
int main(void) {
    float *a_h, *b_h;  // host data
    float *a_d, *b_d;  // device data
    int N = 14, nBytes, i;

    nBytes = N*sizeof(float);
    a_h = (float *)malloc(nBytes);
    b_h = (float *)malloc(nBytes);
    cudaMalloc((void **) &a_d, nBytes);
    cudaMalloc((void **) &b_d, nBytes);

    for (i=0; i<N; i++) a_h[i] = 100.f + i;

    cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);
    cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);
    cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

    for (i=0; i<N; i++) assert( a_h[i] == b_h[i] );
    free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
    return 0;
}
```

int main(void)
{
 float *a_h, *b_h; // host data
 float *a_d, *b_d; // device data
 int N = 14, nBytes, i ;

 nBytes = N*sizeof(float);
 a_h = (float *)malloc(nBytes);
 b_h = (float *)malloc(nBytes);
 cudaMalloc((void **) &a_d, nBytes);
 cudaMalloc((void **) &b_d, nBytes);

 for (i=0, i<N; i++) a_h[i] = 100.f + i;

 cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);
 cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

 for (i=0; i< N; i++) assert(a_h[i] == b_h[i]);
 free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
 return 0;
}
int main(void)
{
 float *a_h, *b_h; // host data
 float *a_d, *b_d; // device data
 int N = 14, nBytes, i ;

 nBytes = N*sizeof(float);
 a_h = (float *)malloc(nBytes);
 b_h = (float *)malloc(nBytes);
 cudaMalloc((void **) &a_d, nBytes);
 cudaMalloc((void **) &b_d, nBytes);

 for (i=0, i<N; i++) a_h[i] = 100.f + i;

 cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);
 cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

 for (i=0; i< N; i++) assert(a_h[i] == b_h[i]);
 free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
 return 0;
}
int main(void)
{
 float *a_h, *b_h; // host data
 float *a_d, *b_d; // device data
 int N = 14, nBytes, i;

 nBytes = N*sizeof(float);
 a_h = (float *)malloc(nBytes);
 b_h = (float *)malloc(nBytes);
 cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);
 cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

 for (i=0, i<N; i++) a_h[i] = 100.f + i;

 cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);
 cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

 for (i=0; i<N; i++) assert(a_h[i] == b_h[i]);
 free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
 return 0;
}
int main(void)
{
 float *a_h, *b_h; // host data
 float *a_d, *b_d; // device data
 int N = 14, nBytes, i;

 nBytes = N*sizeof(float);
 a_h = (float *)malloc(nBytes);
 b_h = (float *)malloc(nBytes);
 cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);
 cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

 for (i=0, i<N; i++) a_h[i] = 100.f + i;
 cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);
 cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

 for (i=0; i< N; i++) assert(a_h[i] == b_h[i]);
 free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
 return 0;
}
int main(void)
{
 float *a_h, *b_h; // host data
 float *a_d, *b_d; // device data
 int N = 14, nBytes, i ;

 nBytes = N*sizeof(float);
 a_h = (float *)malloc(nBytes);
 b_h = (float *)malloc(nBytes);
 cudaMemcpy((void **) &a_d, nBytes);
 cudaMemcpy((void **) &b_d, nBytes);

 for (i=0, i<N; i++) a_h[i] = 100.f + i;

 cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);
 cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

 for (i=0; i< N; i++) assert(a_h[i] == b_h[i]);
 free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
 return 0;
}
Executing Code on the GPU

Kernels are C functions with some restrictions

- Cannot access host memory
- Must have `void` return type
- No variable number of arguments ("varargs")
- Not recursive
- No static variables

Function arguments automatically copied from host to device
Function Qualifiers

Kernels designated by function qualifier:

- **__global__**
 - Function called from host and executed on device
 - Must return void

Other CUDA function qualifiers

- **__device__**
 - Function called from device and run on device
 - Cannot be called from host code

- **__host__**
 - Function called from host and executed on host (default)
 - **__host__** and **__device__** qualifiers can be combined to generate both CPU and GPU code
Launching Kernels

- Modified C function call syntax:

 \[\text{kernel} \llll \text{dim3 } dG, \text{dim3 } dB \rrrr (\ldots) \]

- Execution Configuration ("<<< >>>")
 - \(dG \) - dimension and size of grid in blocks
 - Two-dimensional: \(x \) and \(y \)
 - Blocks launched in the grid: \(dG.x \times dG.y \)

 - \(dB \) - dimension and size of blocks in threads:
 - Three-dimensional: \(x, y, \) and \(z \)
 - Threads per block: \(dB.x \times dB.y \times dB.z \)

 - Unspecified \(\text{dim3} \) fields initialize to 1
More on Thread and Block IDs

- Threads and blocks have IDs
 - So each thread can decide what data to work on

- Block ID: 1D or 2D
- Thread ID: 1D, 2D, or 3D

- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes
Execution Configuration Examples

```
dim3 grid, block;
grid.x = 2; grid.y = 4;
block.x = 8; block.y = 16;

c kernel<<<grid, block>>>(...);
```

```
dim3 grid(2, 4), block(8,16);

c kernel<<<grid, block>>>(...);
```

```
c kernel<<<8,1024>>>(...);
```

Equivalent assignment using constructor functions
CUDA Built-in Device Variables

All `__global__` and `__device__` functions have access to these automatically defined variables:

- `dim3 gridDim;`
 Dimensions of the grid in blocks (at most 2D)
- `dim3 blockDim;`
 Dimensions of the block in threads
- `dim3 blockIdx;`
 Block index within the grid
- `dim3 threadIdx;`
 Thread index within the block
Unique Thread IDs

Built-in variables are used to determine unique thread IDs
- Map from local thread ID (threadIdx) to a global ID which can be used as array indices

\[\text{blockIdx.x} \]
\[\text{blockDim.x} = 5 \]
\[\text{threadIdx.x} \]

\[\text{blockIdx.x} \times \text{blockDim.x} + \text{threadIdx.x} \]

Grid

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
Minimal Kernels

```c
__global__ void kernel( int *a )
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    a[idx] = 7;
}
```

Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

```c
__global__ void kernel( int *a )
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    a[idx] = blockIdx.x;
}
```

Output: 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2

```c
__global__ void kernel( int *a )
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    a[idx] = threadIdx.x;
}
```

Output: 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

© NVIDIA Corporation 2009
Increment Array Example

CPU program

```c
void inc_cpu(int *a, int N) {
    int idx;
    for (idx = 0; idx < N; idx++)
        a[idx] = a[idx] + 1;
}

void main() {
    ...
    inc_cpu(a, N);
    ...
}
```

CUDA program

```c
__global__ void inc_gpu(int *a_d, int N) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < N)
        a_d[idx] = a_d[idx] + 1;
}

void main() {
    ...
    dim3 dimBlock (blocksize);
    dim3 dimGrid(ceil(N/(float)blocksize));
    inc_gpu<<<dimGrid, dimBlock>>>(a_d, N);
    ...
}
```
Computing $y = ax + y$ with a Serial Loop

```c
void saxpy_serial(int n, float alpha, float *x, float *y)
{
    for(int i = 0; i<n; ++i)
        y[i] = alpha*x[i] + y[i];
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);
```

Computing $y = ax + y$ in parallel using CUDA

```c
__global__ void saxpy_parallel(int n, float alpha, float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if( i<n ) y[i] = alpha*x[i] + y[i];
}

// Invoke parallel SAXPY kernel (256 threads per block)
int nbblocks = (n + 255) / 256;
saxpy_parallel<<<nbblocks, 256>>>(n, 2.0, x, y);
```
Host Synchronization

- All kernel launches are asynchronous
 - control returns to CPU immediately
 - kernel executes after all previous CUDA calls have completed
- `cudaMemcpy()` is synchronous
 - control returns to CPU after copy completes
 - copy starts after all previous CUDA calls have completed
- `cudaThreadSynchronize()`
 - blocks until all previous CUDA calls complete
Host Synchronization Example

...
// copy data from host to device
cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
inc_gpu<<<ceil(N/(float)blocksize), blocksize>>>(a_d, N);

// run independent CPU code
run_cpu_stuff();

// copy data from device back to host
cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);

...
Variable Qualifiers (GPU code)

__device__
- Stored in global memory (large, high latency, no cache)
- Allocated with `cudaMalloc(__device__ qualifier implied)`
- Accessible by all threads
- Lifetime: application

__shared__
- Stored in on-chip shared memory (very low latency)
- Specified by execution configuration or at compile time
- Accessible by all threads in the same thread block
- Lifetime: thread block

Unqualified variables:
- Scalars and built-in vector types are stored in registers
- Arrays may be in registers or local memory
Maximize Use of Shared Memory

- Shared memory is hundreds of times faster than global memory
- Threads can cooperate via shared memory
 - Not so via global memory
- A common way of scheduling some computation on the device is to **block it up** to take advantage of shared memory:
 - **Partition the data set** into data subsets that fit into shared memory
 - **Handle each data subset with one thread block**:
 - Load the subset from global memory to shared memory
 - __syncthreads()
 - Perform the computation on the subset from shared memory
 - each thread can efficiently multi-pass over any data element
 - __syncthreads() (if needed)
 - Copy results from shared memory to global memory
GPU Thread Synchronization

void __syncthreads();

Synchronizes all threads in a block
- Generates barrier synchronization instruction
- No thread can pass this barrier until all threads in the block reach it
- Used to avoid RAW / WAR / WAW hazards when accessing shared memory

Allowed in conditional code only if the conditional is uniform across the entire thread block
GPU Atomic Integer Operations

- Requires hardware with compute capability ≥ 1.1
 - G80 = Compute capability 1.0
 - G84/G86/G92 = Compute capability 1.1
 - GT200 = Compute capability 1.3

Atomic operations on integers in global memory:
 - Associative operations on signed/unsigned ints
 - add, sub, min, max, ...
 - and, or, xor
 - Increment, decrement
 - Exchange, compare and swap

Atomic operations on integers in shared memory
 - Requires compute capability ≥ 1.2
Parallel reduction

_global_void plus_reduce(int *input, int N, int *total)
{
 int tid = threadIdx.x;
 int i = blockIdx.x*blockDim.x + threadIdx.x;

 // Each block loads its elements into shared memory
 shared int x[blocksize];
 x[tid] = input[i]; // assuming that N is a multiple of the block size
 _syncthreads();

 // Build summation tree over elements.
 for(int s=blockDim.x/2; s>0; s=s/2)
 {
 if(tid < s) x[tid] += x[tid + s];
 _syncthreads();
 }

 // Thread 0 adds the partial sum to the total sum
 if(tid == 0) atomicAdd(total, x[tid]);
}

Parallel reduction
Coalescing

- Global memory access of 32, 64, or 128-bit words by a half-warp of threads can result in as few as one (or two) transaction(s) if certain access requirements are met.
- Depends on compute capability:
 - 1.0 and 1.1 have stricter access requirements.

Examples – float (32-bit) data

- 64B aligned segment (16 floats)
- 128B aligned segment (32 floats)
Coalescing
Compute capability 1.0 and 1.1

- K-th thread must access k-th word in the segment (or k-th word in 2 contiguous 128B segments for 128-bit words), not all threads need to participate

Coalesces – 1 transaction

Out of sequence – 16 transactions

Misaligned – 16 transactions
Coalescing
Compute capability 1.2 and higher

- Coalescing is achieved for any pattern of addresses that fits into a segment of size: 32B for 8-bit words, 64B for 16-bit words, 128B for 32- and 64-bit words
- Smaller transactions may be issued to avoid wasted bandwidth due to unused words

1 transaction - 64B segment

2 transactions - 64B and 32B segments

1 transaction - 128B segment
Occupancy

Thread instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep the hardware busy.

Occupancy = Number of warps (threads) running concurrently on a multiprocessor divided by maximum number of warps (threads) that can run concurrently.

Limited by resource usage:
- Registers
- Shared memory
Blocks per Grid Heuristics

of blocks > # of multiprocessors
- So all multiprocessors have at least one block to execute

of blocks / # of multiprocessors > 2
- Multiple blocks can run concurrently in a multiprocessor
- Blocks that aren’t waiting at a __syncthreads() keep the hardware busy
- Subject to resource availability – registers, shared memory

of blocks > 100 to scale to future devices
- Blocks executed in pipeline fashion
- 1000 blocks per grid will scale across multiple generations
Register Dependency

Read-after-write register dependency

- Instruction’s result can be read ~24 cycles later (assuming 6-stage pipelines, 8 cores per SM -- 4 cycles per warp instruction)

Scenarios:

CUDA:

- \[x = y + 5; \]
- \[z = x + 3; \]
- \[s_data[0] += 3; \]

PTX:

- `add.f32 $f3, $f1, $f2`
- `add.f32 $f5, $f3, $f4`
- `ld.shared.f32 $f3, [$r31+0]`
- `add.f32 $f3, $f3, $f4`

To completely hide latency in the absence of forwarding:

- Run at least **192** threads (6 warps) per multiprocessor
 - At least **25%** occupancy (1.0/1.1), **18.75%** (1.2/1.3)
- Warps do not have to belong to the same thread block
Register Pressure

- **Hide latency by using more threads per multiprocessor**

- **Limiting Factors:**
 - Number of registers per kernel
 - \(8K/16K\) per multiprocessor, partitioned among concurrent threads
 - Amount of shared memory
 - \(16KB\) per multiprocessor, partitioned among concurrent threadblocks

- **Compile with** `-ptxas-options=-v` **flag**

- **Use** `-maxrregcount=N` **flag to NVCC**
 - \(N\) = desired maximum registers / kernel
 - At some point “spilling” into local memory may occur
 - Reduces performance – local memory is slow
Optimizing threads per block

Choose threads per block as a multiple of warp size
- Avoid wasting computation on under-populated warps
- Facilitates coalescing

More threads per block != higher occupancy
- Granularity of allocation
 - Eg. compute capability 1.1 (max 768 threads/multiprocessor)
 - 512 threads/block => 66% occupancy (can fit only one block)
 - 256 threads/block can have 100% occupancy (can fit 3 blocks)

Heuristics
- Minimum: 64 threads per block
 - Only if multiple concurrent blocks
- 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
- This all depends on your computation, so experiment!
Unified Memory (in recent Cuda releases)
Dramatically Lower Developer Effort

Developer View Today

System Memory

GPU Memory

Developer View With Unified Memory

Unified Memory
Super Simplified Memory Management Code

CPU Code

```c
void sortfile(FILE *fp, int N) {
    char *data;
    data = (char *)malloc(N);
    fread(data, 1, N, fp);
    qsort(data, N, 1, compare);
    use_data(data);
    free(data);
}
```

CUDA 6 Code with Unified Memory

```c
void sortfile(FILE *fp, int N) {
    char *data;
    cudaMallocManaged(&data, N);
    fread(data, 1, N, fp);
    qsort<<<...>>>(data, N, 1, compare);
    cudaDeviceSynchronize();
    use_data(data);
    cudaFree(data);
}
```
Unified Memory Delivers

1. Simpler Programming & Memory Model
 - Single pointer to data, accessible anywhere
 - Tight language integration
 - Greatly simplifies code porting

2. Performance Through Data Locality
 - Migrate data to accessing processor
 - Guarantee global coherency
 - Still allows cudaMemcpyAsync() hand tuning