Question 1:

In this question, consider the following series of word addresses:

20, 33, 21, 4, 17, 33, 4

Assuming a direct mapped cache with 16 one-word blocks, show the content of the cache after each memory reference and indicate whether it is a hit or a miss. Use \([tag, M(address)]\) to describe the content of each entry. For example \([4, M(46)]\) indicates that the entry contains tag=4 and the data from memory location 46. Indicate that an entry E1 is replaced by E2 by crossing E1 and writing E2 next to it.

\[
\begin{align*}
20 & = 16 \times 1 + 4 \\
33 & = 16 \times 2 + 1 \\
21 & = 16 \times 1 + 5 \\
4 & = 16 \times 0 + 4 \\
17 & = 16 \times 1 + 1 \\
\end{align*}
\]

Question 2:

In this question, consider the following series of word addresses:

20, 23, 21, 4, 21, 28, 22, 23, 5

Assuming a direct mapped cache with two-word blocks and total size of 16 words, show the content of the cache after each memory reference and indicate whether it is a hit or a miss. Use \([4, M(46), M(47)]\) to indicate that the entry contains a block of two words from memory locations 46 and 47.

\[
\begin{align*}
20 & = 8 \times 1 + 2 \\
23 & = 8 \times 1 + 3 \\
21 & = 8 \times 1 + 2 \\
4 & = 8 \times 0 + 2 \\
28 & = 8 \times 1 + 6 \\
22 & = 8 \times 1 + 2 \\
5 & = 8 \times 0 + 2 \\
\end{align*}
\]

Notes:

- \(B = w / 2\)
- \(Tag = B / 8 = w / 16\)
- \(Index = B \mod 8 = (w \mod 16) / 2\)
Question 3:
Compute the total number of bits required to implement a 512KB direct mapped cache with 4-bytes block size. Assume that each memory word is 32-bit long and the memory is byte addressable with 32-bits addresses. Note that the number of bits needed to implement the cache represents the total amount of memory needed for storing all of the data, tags and valid bits (ignore any other bits).

<table>
<thead>
<tr>
<th>Cache size</th>
<th>512KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block size</td>
<td>one word</td>
</tr>
<tr>
<td># of bits for data array</td>
<td>4096 Kbits</td>
</tr>
<tr>
<td># of bits for tag array</td>
<td>1664 Kbits</td>
</tr>
<tr>
<td># of bits for valid bits</td>
<td>128 Kbits</td>
</tr>
<tr>
<td>Total # of bits</td>
<td>5888 Kbits</td>
</tr>
</tbody>
</table>

Cache Size: 512KB = 2^{19} bytes
Block Size: 2^0 word = 2^2 bytes
of blocks: $(2^{19})/(2^2) = 2^{17}$
Tag field: $(32-2-17) = 13$ bits
of bits for data array = 512*8 = 4096Kbits
of bits for tag array = $2^{17} \times 13 = 1664$Kbits
of bits for valid bits = $2^{17} \times 1 = 128$Kbits
Total # of bits = 5888Kbits

Question 4:
Compute the total number of bits required to implement a 512KB direct mapped cache with 16-bytes block size (4 words). Assume that each memory word is 32-bit long and the memory is byte addressable with 32-bits addresses. Note that the number of bits needed to implement the cache represents the total amount of memory needed for storing all of the data, tags and valid bits (ignore any other bits).

<table>
<thead>
<tr>
<th>Cache size</th>
<th>512KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block size</td>
<td>one word</td>
</tr>
<tr>
<td># of bits for data array</td>
<td>4096 Kbits</td>
</tr>
<tr>
<td># of bits for tag array</td>
<td>416 Kbits</td>
</tr>
<tr>
<td># of bits for valid bits</td>
<td>32 Kbits</td>
</tr>
<tr>
<td>Total # of bits</td>
<td>4544 Kbits</td>
</tr>
</tbody>
</table>

Cache Size: 512KB = 2^{19} bytes
Block Size: 2^2 word = 2^4 bytes
of blocks: $(2^{19})/(2^4) = 2^{15}$
Tag field: $(32-4-15) = 13$ bits
of bits for data array = 512*8 = 4096 Kbits
of bits for tag array = $2^{15} \times 13 = 416$ Kbits
of bits for valid bits = $2^{15} \times 1 = 32$ Kbits
Total # of bits = 4544 Kbits