Question 1:
Assume that the elements of the $n \times n$ matrix A are stored row wise in memory (row major numbering) and that the cache size is enough to store only half the elements of A.

a) If the cache block size is 8 words, what is the cache miss rate while accessing the elements of A during the following computation of the multiplication of A by two vectors, Y and W?

b) How can the computation be rearranged to improve the miss rate while accessing A?

a) The miss rate is 12.5%

b) Fuse the two loops to reduce the miss rate by half

```c
for (i = 0; i < n; i = i+1)
    { x[i] = 0;
      z[i] = 0;
      for (j = 0; j < n; j = j+1)
          { x[i] = x[i] + A[i][j] * Y[j];
            z[i] = z[i] + A[i][j] * W[j];
          };
    }
```

Question 2:
Assume a system with a 8KB cache and cache block size of 4 words. The following computation multiply $n \times n$ matrices, where $n = 40$ ($40 \times 40 \times 4 = 6.4$KB is enough to store all the elements of one 40×40 matrix).

a) What is the miss rate while accessing the elements of B and E?

b) How can you rearrange the computation to improve this miss rate?

a) The miss rate is 25%

b) Splitting the loop reduces the miss rate by a factor of 40.

```c
for (i = 0; i < 40 ; i++)
    for (j = 0 ; j < 40 ; j++)
        { r = 0;
          v = 0;
          for (k = 0; k < 40 ; k++)
              { r = r + A[i][k]*B[k][j];
                v = v + D[i][k]*E[k][j];
              };
          C[i][j] = r;
          F[i][j] = v;
        };
```
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
{
 r = 0;
 v = 0;
 for (k = 0; k < n; k++)
 {
 r = r + A[i][k] * B[k][j];
 v = v + D[i][k] * E[k][j];
 }
 C[i][j] = r;
 F[i][j] = v;
}

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
{
 r = 0;
 for (k = 0; k < n; k++)
 r = r + A[i][k] * B[k][j];
 C[i][j] = r;
}

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
{
 v = 0;
 for (k = 0; k < n; k++)
 v = v + D[i][k] * E[k][j];
 F[i][j] = v;
}

b) Fuse the two loops to reduce the miss rate by half
Question 3:

b) What is the minimum Hamming distance between the code words corresponding to the five data words specified in (a)?

The distance between any two code words is at least 3

c) Assuming at most a single bit error, retrieve the correct data word corresponding to the code words: 1010101 and 1110111

- **1010101 → syndrome = 000 →**
 - no errors detected →
 - data word is 1101

- **1110111 → syndrome = 100 →**
 - error is in bit position 4 →
 - the corrected code word is 1111111 →
 - the decoded data word is 1111

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1=0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>s2=0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>s3=0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Syndrome = s3 s2 s1

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1=0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>s2=0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>s3=0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Syndrome = s3 s2 s1

Question 3:

d) As described above, 1100 is encoded as 0111100. Assume that two bits are flipped while reading 0111100 from memory resulting in 1011100, what will be the outcome of the decoding process?

- **1011100 → syndrome = 011 →**
 - error is in bit position 3 →
 - the corrected code word is 1001100 →
 - the decoded data word is 0100, which is not the original word 1100

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1=1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s2=1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s3=0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Syndrome = s3 s2 s1