
CS1550 Lab 2



Locking

• Computes with multiple CPU executing independently
• Some data is shared (e.g. bank balance)
• Have to have a strategy to maintain the correctness
• Lock provide the mutual exclusion
• Only one CPU can hold the lock for one shared data



struct list *list = 0; 
struct lock listlock; 

void 
insert(int data) 
{ 

struct list *l; 

acquire(&listlock);
l = malloc(sizeof *l); 
l->data = data; 
l->next = list; 
list = l; 
release(&listlock); 

} 

Code

Assume execution isolation Execution with locks

struct list {
int data;
struct list *next; 

};
struct list *list = 0; 
void
insert(int data) { 

struct list *l; 
l = malloc(sizeof *l); 
l->data = data;
l->next = list;
list = l; 

} 



Void
acquire(struct spinlock *lk)
{ 

for(;;) { 
if(!lk->locked) { 

lk->locked = 1; 
break; 

} 
} 

} 

Spinlock
Keep spin until find lock is released

Problem?



Spinlock
Keep spin until find lock is released

Problem?
In multiple CPUs environment, if two 
CPUs simultaneously reach line 25…
Both of them will get access to data
Need to let it execute in one atomic 
step. 
xchg instruction (each iteration 
atomatically set lock to 1)

Void
acquire(struct spinlock *lk)
{ 

for(;;) { 
if(!lk->locked) { 

lk->locked = 1; 
break; 

} 
} 

} 



Xchg atomic hardware instruction

• Swap a word in memory with 
the contents of a register
• In acquire function:
• loop xchg instruction
• Each round atomically read lock 

and set the lock to 1

void
acquire(struct spinlock *lk)
{

pushcli(); // disable interrupts to 
avoid deadlock.

if(holding(lk))
panic("acquire");

// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0);

__sync_synchronize();

// Record info about lock acquisition for 
debugging.

lk−>cpu = mycpu();
getcallerpcs(&lk, lk−>pcs);

}



Test and Set

boolean test_and_set (boolean *target) 
{ 

boolean rv = *target; 
*target = TRUE; 
return rv; 

} 



Compare_and _swap

int compare _and_swap(int *value, int expected, int new_value) 
{

int temp = *value; 
if (*value == expected) 

*value = new_value; 
return temp; 

} 



Sleep locks

• For code need to hold a lock for a 
long time
• Read/write on the disk

• Efficient way is let the processor be 
yielded and let other threads execute
• Locked field protected by a spinlock
• Sleep function yield the CPU

void 
acquiresleep(struct sleeplock *lk) 
{ 

acquire(&lk−>lk); 
while (lk−>locked) { 

sleep(lk, &lk−>lk); 
} 
lk−>locked = 1; 
lk−>pid = myproc()−>pid; 
release(&lk−>lk); 

} 

void 
releasesleep(struct sleeplock *lk) 
{ 

acquire(&lk−>lk); 
lk−>locked = 0; 
lk−>pid = 0; 
wakeup(lk); 
release(&lk−>lk); 

} 



Sleep

• Put one process to sleep waiting 
for event
• Mark current process as sleeping
• Call sched() to release the 

processor
• Acquire ptable lock to make sure 

other process ‘s call wakeup not 
affect putting the process to 
sleep

void 
sleep(void *chan, struct spinlock *lk) 
{
struct proc *p = myproc(); 

if(p == 0) 
panic("sleep"); 

if(lk == 0)
panic("sleep without lk"); 

if(lk != &ptable.lock){ 
acquire(&ptable.lock); 
release(lk); 

}
p−>chan = chan;
p−>state = SLEEPING; 

sched(); 
p->chan = 0
if(lk != &ptable.lock){ 
release(&ptable.lock); 
acquire(lk); 

}
}



Wake up

• Wake up process when event 
happened
• Mark a waiting process as 

runnable

static void
wakeup1(void *chan) 
{

struct proc *p;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)

if(p−>state == SLEEPING && p−>chan == chan)
p−>state = RUNNABLE;

}

void
wakeup(void *chan)
{

acquire(&ptable.lock);
wakeup1(chan);
release(&ptable.lock);

}



Reference

• Cox, Russ, M. Frans Kaashoek, and Robert Morris. "Xv6, a simple Unix-
like teaching operating system." 2013-09-05]. http://pdos. csail. mit. 
edu/6.828/2012/xv6. html (2011).


