
CS 1550
Lab 1 – xv6 Introduction

Setup and exercise

CS 1550 – Kernel Space vs User Space

• OS manages hardware, services and user processes
• CPU
• Memory (Address space)
• I/O devices (Disk, mouse, video card, sound, network, etc.)

Operating System

Hardware

CS 1550 – Kernel Space vs User Space

• OS manages hardware, services and user processes
• CPU
• Memory (Address space)
• I/O devices (Disk, mouse, video card, sound, network, etc.)

Operating System

Hardware

User program

CS 1550 – Kernel Space vs User Space

• OS is just another software

Operating System

Hardware

User program

CS 1550 – Kernel Space vs User Space

• OS is just another software
• User applications should not change the kernel(OS software)

Operating System

Hardware

User program

CS 1550 – Kernel Space vs User Space

• User space
• Less privileged memory space where user processes execute

• Kernel space
• Privileged memory space where the OS main process resides
• No User application should be able to change

Kernel SpaceUser Space

Hardware

CS 1550 – Kernel Space vs User Space

User Space

User
process 1

User
process 2

User
process 3

• System Call
• User processes have to do system calls to access the OS resources and

Hardware

CS 1550 – Kernel Space vs User Space

User Space

User
process 1

User
process 2

User
process 3

System calls

• System Call
• User processes have to do system calls to access the OS resources and

Hardware

CS 1550 – Kernel Space vs User Space

Kernel SpaceUser Space

User
process 1

User
process 2

User
process 3 OS process

System calls

• System Call
• User processes have to do system calls to access the OS resources and

Hardware

CS 1550 – Kernel Space vs User Space

Kernel SpaceUser Space Hardware

User
process 1

User
process 2

User
process 3 OS process CPU

I/O devicesDevice
DriverSystem calls

• System Call (OS function)
• User processes have to do system calls to access the OS resources and

Hardware

System Call
-

exercise

CS 1550 – xv6

• Simple Unix-like teaching operating system from MIT
• Provides basic services to running programs

xv6

CS 1550 – Unix is everywhere

• Most operating systems are based on Linux

CS 1550 – xv6

• Simple Unix-like teaching operating system from MIT

• Has a subset of traditional system calls

• fork() Create process

• exit() Terminate current process

• wait() Wait for a child process

• kill(pid) Terminate process pid

• getpid() Return current process’s id sleep(n)

• Sleep for n time units exec(filename, *argv)

• Load a file and execute it sbrk(n)

• ….

CS 1550 – xv6

• Compile and Run xv6 in a cs pitt server
• Since it is an OS how can we run it?

xv6

Run where?

CS 1550 – xv6

• Compile and Run xv6 in a cs pitt server

xv6

Run where?

CS 1550 – xv6

• Compile and Run xv6 in a cs pitt server

xv6

CS 1550 – xv6

• Compile and Run xv6 in a cs pitt server

xv6
PC hardware

Emulator
(Virtual Machine)

CS 1550 – xv6

• Compile and Run xv6 in a cs pitt server

xv6 Remote server
linux.cs.pitt.edu

PC hardware
Emulator

(Virtual Machine)

CS 1550 – xv6

• Compile and Run xv6 in a cs pitt server

xv6
Remote server
linux.cs.pitt.edu PC hardware

Emulator
(Virtual Machine)

CS 1550 – Compile and Run xv6

1. Extend disk Quota, if you have less then 500mb free space
a) Log in to https://my.pitt.edu
b) Click on "Profile" at the top of the screen
c) Click on "Manage Your Account"
d) Click on "Manage Email Quota"
e) Click on "Increase My UNIX Quota"

CS 1550 – Compile and Run xv6

1. Extend disk Quota, if you have less then 500mb free space
a) Log in to https://my.pitt.edu
b) Click on "Profile" at the top of the screen
c) Click on "Manage Your Account"
d) Click on "Manage Email Quota"
e) Click on "Increase My UNIX Quota"

CS 1550 – xv6

• Log in to linux.cs.pitt.edu
• ssh user_name@linux.cs.pitt.edu

• Use Terminal(MacOS/Ubuntu)
• Use Putty/Powershell (Windows)

CS 1550 – xv6

• Download the xv6 source code from github
• git clone git://github.com/mit-pdos/xv6-public.git

CS 1550 – xv6

• Got into the cloned xv6 source code folder
• cd xv6-public

• Compile and run the code with
• make qemu-nox

CS 1550 – xv6

CS 1550 – xv6

• Compile and run the code with
• make qemu-nox

Compiles and run xv6 with qemu

CS 1550 – xv6

• Compile and Run xv6 in a cs pitt server

xv6
Remote server
linux.cs.pitt.edu PC hardware

Emulator
(Virtual Machine)

CS 1550 – xv6

• Compile and Run xv6 in a cs pitt server

xv6
Remote server
linux.cs.pitt.edu PC hardware

Emulator
(Virtual Machine)

CS 1550 – xv6

• Once in xv6 you can call ls

CS 1550 – xv6 – Adding a custom Syscall

• First we need to define our new call and its number at
• syscall.h

CS 1550 – xv6 – Adding a custom Syscall

• First we need to define our new call and its number at
• syscall.h

• Add
• #define SYS_getday 22

CS 1550 – xv6 – Adding a custom Syscall

• Next we need to map the new call in the array
pointer of system calls
• syscall.c

• Add
• extern int sys_getday(void);
• [SYS_getday] sys_getday,

CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls
• sysproc.c -> all the other syscalls

CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls
• sysproc.c -> all the other syscalls

CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls
• sysproc.c -> all the other syscalls

CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls
• sysproc.c -> all the other syscalls

int
sys_getday(void)
{

return 6;
}

CS 1550 – xv6 – Adding a custom Syscall

• Afterwards we define the interface for user programs to call
• Open usys.S

• Add
• SYSCALL(getday)

CS 1550 – xv6 – Adding a custom Syscall

• Finally we open
• user.h

• Add
• int getday(void);

CS 1550 – xv6 – Adding a custom Syscall

• Example user program
• todays_date.c

#include "types.h"
#include "stat.h"
#include "user.h"

int main(void) {
printf(1, "Today is %d\n", getday());
exit();

}

CS 1550 – xv6 – Adding a custom Syscall

• Adding an user program
• Open Makefile

• Add
• _todays_date\

