
CS 1550
Lab 1 – xv6 Introduction 

Setup and exercise



CS 1550 – Kernel Space vs User Space 

• OS manages hardware, services and user processes
• CPU
• Memory (Address space)
• I/O devices (Disk, mouse, video card, sound, network, etc.)

Operating System

Hardware
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CS 1550 – Kernel Space vs User Space 

• User space 
• Less privileged memory space where user processes execute

• Kernel space 
• Privileged memory space where the OS main process resides
• No User application should be able to change

Kernel SpaceUser Space

Hardware
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CS 1550 – Kernel Space vs User Space 

Kernel SpaceUser Space Hardware

User 
process 1

User 
process 2

User 
process 3 OS process CPU

I/O devicesDevice
DriverSystem calls

• System Call (OS function)
• User processes have to do system calls to access the OS resources and 

Hardware



System Call
-

exercise



CS 1550 – xv6 

• Simple Unix-like teaching operating system from MIT
• Provides basic services to running programs

xv6



CS 1550 – Unix is everywhere

• Most operating systems are based on Linux



CS 1550 – xv6 

• Simple Unix-like teaching operating system from MIT

• Has a subset of traditional system calls

• fork() Create process 

• exit() Terminate current process 

• wait() Wait for a child process 

• kill(pid) Terminate process pid

• getpid() Return current process’s id sleep(n) 

• Sleep for n time units exec(filename, *argv) 

• Load a file and execute it sbrk(n) 

• ….



CS 1550 – xv6 

• Compile and Run xv6 in a cs pitt server
• Since it is an OS how can we run it?

xv6

Run where?
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CS 1550 – Compile and Run xv6 

1. Extend disk Quota, if you have less then 500mb free space
a) Log in to https://my.pitt.edu
b) Click on "Profile" at the top of the screen 
c) Click on "Manage Your Account" 
d) Click on "Manage Email Quota" 
e) Click on "Increase My UNIX Quota" 
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CS 1550 – xv6 

• Log in to linux.cs.pitt.edu
• ssh user_name@linux.cs.pitt.edu

• Use Terminal(MacOS/Ubuntu)
• Use Putty/Powershell (Windows) 



CS 1550 – xv6 

• Download the xv6 source code from github
• git clone git://github.com/mit-pdos/xv6-public.git



CS 1550 – xv6 

• Got into the cloned xv6 source code folder
• cd xv6-public 

• Compile and run the code with
• make qemu-nox
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• Compile and run the code with
• make qemu-nox

Compiles and run xv6 with qemu
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CS 1550 – xv6 

• Once in xv6 you can call ls



CS 1550 – xv6 – Adding a custom Syscall

• First we need to define our new call and its number at
• syscall.h
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• First we need to define our new call and its number at
• syscall.h

• Add
• #define SYS_getday 22



CS 1550 – xv6 – Adding a custom Syscall

• Next we need to map the new call in the array 
pointer of system calls
• syscall.c

• Add 
• extern int sys_getday(void);
• [SYS_getday]   sys_getday,



CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls 
• sysproc.c -> all the other syscalls



CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls 
• sysproc.c -> all the other syscalls



CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls 
• sysproc.c -> all the other syscalls



CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls 
• sysproc.c -> all the other syscalls

int
sys_getday(void)
{

return 6;
}



CS 1550 – xv6 – Adding a custom Syscall

• Afterwards we define the interface for user programs to call
• Open usys.S

• Add
• SYSCALL(getday)



CS 1550 – xv6 – Adding a custom Syscall

• Finally we open 
• user.h

• Add
• int getday(void);



CS 1550 – xv6 – Adding a custom Syscall

• Example user program
• todays_date.c

#include "types.h"
#include "stat.h"
#include "user.h"

int main(void) {
printf(1, "Today is %d\n", getday());
exit();

}



CS 1550 – xv6 – Adding a custom Syscall

• Adding an user program
• Open Makefile

• Add
• _todays_date\


