Variation and Change in Online Writing

Jacob Eisenstein
@jacobbeisenstein

Georgia Institute of Technology

June 5, 2015
Social media in NAACL 2015

✓ Soricut and Och train skipgrams on Wikipedia.
✓ Faruqui et al test on IMDB movie reviews.
✗ Krishnan and Eisenstein analyze movie dialogues
✓ Tutorial on social media predictive analysis from Volkova et al.
✓ Keynote speech by Lillian Lee on message propagation in Twitter.
Social media in (E)ACL 2014

✗ *Lei et al* train and test on lots of newstext treebanks
✓ *Devlin et al* evaluate on Darpa BOLT Web Forums
✓ *Plank et al* focus on Twitter POS tagging
✓ *Olariu* summarizes microblogging streams
Social media in (E)ACL 2014

✗ Lei et al train and test on lots of newstext treebanks
✓ Devlin et al evaluate on Darpa BOLT Web Forums
✓ Plank et al focus on Twitter POS tagging
✓ Olariu summarizes microblogging streams

Social media won!
Now what?
NLP tools versus social media

- Part-of-speech errors increase by 5x (Gimpel et al., 2011)
- Named entity recognition accuracy from 86% to 44% (Ritter et al., 2011)
- Syntactic parsing accuracy down by double-digits (Foster et al., 2011)
Why and what to do?

Some herald the birth of a new “netspeak” dialect (Thurlow, 2006).

If we build new treebanks for netspeak, will our problems be solved?
What’s different in social media: who

then a few authors, largely homogeneous
now millions of authors, highly diverse
What’s different in social media: what

then constrained set of topics, focusing on “what’s fit for print”

now unconstrained content, with emphasis on phatic communication
What’s different in social media: when

then asynchronous: write it today, read it tomorrow, few opportunities to respond

now speech-like synchrony in written text
What’s different in social media: how

then professionalized writing process, subject to strong institutional regulation

now diverse social contexts for writing, largely free of (traditional) institutional pressures
From netspeak to netspeaks: variation

Social media is not a dialect, genre, or register. *Diversity* is one of its most salient properties.

- hubs blogged bloggers giveaway @klout
- kidd hubs xo =] xoxoxo muah xoxo darren
- (: :'') xd (; /: <333 d: <33 </3 -___-
- nods softly sighs smiles finn laughs
- lmfaoo niggas ctfu lmfaooo wyd lmaoo
- gop dems senate unions conservative democrats
- /cc api ios ui portal developer e3 apple’s

(from Bamman et al., 2014)
As social media takes on a speech-like role, new textual affordances are needed for paralinguistic information.

Weaker language standards encourages experimentation and novelty.

Out-of-vocabulary bigrams between pairs of 1M-word samples, divided by base rate (Eisenstein, 2013b).
Variation and change in social media

- Traditional annotation + learning approaches will not “solve” social media NLP.
- Building robust language technology for social media requires understanding variation and change.
- Sociolinguistics is dedicated to exactly these issues, but has mainly focused on small speech corpora. My goal is to apply sociolinguistic ideas to large-scale social media.
A landscape of digital communication

- **Instant messaging**
 - Tagliamonte and Denis 2008

- **Email**
 - Baron 1998

- **Text messages**
 - Ling 2005
 - Anis 2007

- **Chatrooms**
 - Paolillo 1999

- **Twitter**
 - Eisenstein et al 2010
 - Zappavigna 2012
 - Doyle 2014

- **Blogs, Forums, Wikipedia**
 - Herring and Paolillo 2006
 - Androutsopoulos 2007
 - Scherrer and Rambow 2010

More synchronous

More asynchronous

More private

More public
Twitter

- 140-character messages
- Each user has a custom ***timeline*** of people they’ve chosen to ***follow***.
- Most data is publicly accessible, and social network and geographical metadata is available.
Who are these people?

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>All internet users</td>
<td>18%</td>
<td>23%*</td>
</tr>
<tr>
<td>Men</td>
<td>17</td>
<td>24*</td>
</tr>
<tr>
<td>Women</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>White, Non-Hispanic</td>
<td>16</td>
<td>21*</td>
</tr>
<tr>
<td>Black, Non-Hispanic</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>Hispanic</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>18-29</td>
<td>31</td>
<td>37</td>
</tr>
<tr>
<td>30-49</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>50-64</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>65+</td>
<td>5</td>
<td>10*</td>
</tr>
<tr>
<td>High school grad or less</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Some college</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>College+ (n=685)</td>
<td>18</td>
<td>30*</td>
</tr>
<tr>
<td>Less than $30,000/yr</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>$30,000-$49,999</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>$50,000-$74,999</td>
<td>15</td>
<td>27*</td>
</tr>
<tr>
<td>$75,000+</td>
<td>19</td>
<td>27*</td>
</tr>
<tr>
<td>Urban</td>
<td>18</td>
<td>25*</td>
</tr>
<tr>
<td>Suburban</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>Rural</td>
<td>11</td>
<td>17</td>
</tr>
</tbody>
</table>

(Pew Research Center)

- % of online adults who use Twitter; per-message statistics will differ.
- Representativeness concerns are real, but there are potential solutions.
- Social media has important representativeness advantages too.
Table of Contents

Lexical variation

Orthographic variation

Language change as sociocultural influence

Language change in social networks
Yinz

- 2nd-person pronoun
- Western Pennsylvania
- Very rare: appears in 535 of 10^8 messages
Yall

- 2nd-person pronoun
- Southeast, African-American English
- Once per 250 messages
Hella

- Intensifier, e.g.
 i got hella nervous

- Northern California
 (Bucholtz et al., 2007)

- Once per 1000 messages
Jawn

- Noun, diffuse semantics
- Philadelphia, hiphop (Alim, 2009)
- Once per 1000 messages

@user ok u have heard this jawn right
i did wear that jawn but it was kinda warm this week
Summary of spoken dialect terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Rate</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>yinz</td>
<td>200,000</td>
<td>mainly used in Western PA</td>
</tr>
<tr>
<td>yall</td>
<td>250</td>
<td>ubiquitous</td>
</tr>
<tr>
<td>hella</td>
<td>1000</td>
<td>ubiquitous, but more frequent in Northern California</td>
</tr>
<tr>
<td>jawn</td>
<td>1000</td>
<td>mainly used in Philadelphia</td>
</tr>
</tbody>
</table>

- Overall: mixed evidence for spoken language dialect variation in Twitter.
- But are these the right words?
Measuring regional specificity

Per region r,

- *Difference* in frequencies, $f_{i,r} - f_i$

 over-emphasizes frequent words
Measuring regional specificity

Per region r,

- **Difference** in frequencies, $f_{i,r} - f_i$

 \[
 \text{over-emphasizes frequent words}
 \]

- **Log-ratio** in frequencies, $\log f_{i,r} - \log f_i = \log \frac{f_{i,r}}{f_i}$

 \[
 \text{over-emphasizes rare words}
 \]
Measuring regional specificity

Per region r,

- **Difference** in frequencies, $f_{i,r} - f_i$

 over-emphasizes frequent words

- **Log-ratio** in frequencies, $\log f_{i,r} - \log f_i = \log\frac{f_{i,r}}{f_i}$

 over-emphasizes rare words

- **Regularized** log-frequency ratio,

 $\eta_{i,r} \approx \log f_{i,r} - \log f_i$, where $|\eta_{i,r}|$ is penalized.

 $\hat{\eta}_r = \arg\max_{\eta} \log P(w|\eta; f) - \lambda|\eta|$

 λ controls the tradeoff between rare and frequent words
Discovered words

- **New York**: flatbush, baii, brib, bx, staten, mta, odee, soho, deadass, werd
- **Los Angeles**: pasadena, venice, anaheim, dodger, disneyland, angeles, compton, ucla, dodgers, melrose
- **Chicago**: #chicago, lbvs, chicago, blackhawks, #bears, #bulls, mfs, cubs, burbs, bogus
- **Philadelphia**: jawn, ard, #phillies, sixers, phils, wawa, philadelphia, delaware, philly, phillies

place names entities words
ard

alternative spelling for alright

- @name ard let me kno
- lol u’ll be ard
lbvs

laughing but very serious

- i wanna rent a hotel room just to swim lbvs
- tell ur momma 2 buy me a car lbvs
odee

intensifier, related to overdose or overdone

- i’m odee sleepy
- she said she odee miss me
- its rainin odee :(
Table of Contents

Lexical variation

Orthographic variation

Language change as sociocultural influence

Language change in social networks
Phonologically-motivated variables

-t,-d deletion jus, ol
th-stopping dis, doe
r-lessness togetha, neva, lawd, yaself, shawty
vowels tha (the), mayne (man), bruh, brah (bro)
relaxed pronunciations proll, aight
“allegro spellings” (Preston, 1985) gonna, finna, fitna, bouta, tryna, iono
<table>
<thead>
<tr>
<th>alternative spelling</th>
<th>rate</th>
<th>gloss</th>
<th>alt. freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>wanna</td>
<td>1,078</td>
<td>want to</td>
<td>0.642</td>
</tr>
<tr>
<td>tryna</td>
<td>4,073</td>
<td>trying to</td>
<td>0.444</td>
</tr>
<tr>
<td>wassup</td>
<td>8,336</td>
<td>what’s up</td>
<td>0.499</td>
</tr>
<tr>
<td>bruh</td>
<td>11,423</td>
<td>bro</td>
<td>0.204</td>
</tr>
<tr>
<td>prollly</td>
<td>12,872</td>
<td>probably</td>
<td>0.271</td>
</tr>
<tr>
<td>doe</td>
<td>13,228</td>
<td>though</td>
<td>0.149</td>
</tr>
<tr>
<td>na</td>
<td>14,354</td>
<td>no</td>
<td>0.0263</td>
</tr>
<tr>
<td>betta</td>
<td>15,096</td>
<td>better</td>
<td>0.0720</td>
</tr>
<tr>
<td>holla</td>
<td>15,814</td>
<td>holler</td>
<td>0.918</td>
</tr>
<tr>
<td>neva</td>
<td>15,898</td>
<td>never</td>
<td>0.0628</td>
</tr>
<tr>
<td>aight</td>
<td>16,004</td>
<td>alright</td>
<td>0.373</td>
</tr>
<tr>
<td>ta</td>
<td>17,948</td>
<td>to</td>
<td>0.00351</td>
</tr>
<tr>
<td>bouta</td>
<td>21,301</td>
<td>about to</td>
<td>0.118</td>
</tr>
<tr>
<td>shawty</td>
<td>21,966</td>
<td>shorty</td>
<td>0.601</td>
</tr>
<tr>
<td>ion</td>
<td>26,196</td>
<td>i don’t</td>
<td>0.0377</td>
</tr>
</tbody>
</table>
G-deletion

- In speech, “g” is deleted more often from verbs. Does this syntactic conditioning transfer to writing?
G-deletion

- In speech, “g” is deleted more often from verbs. *Does this syntactic conditioning transfer to writing?*
- Corpus: 120K tokens of top 200 unambiguous -ing words (ex. king, thing, sing)
- Part-of-speech tags from CMU Twitter tagger (Gimpel et al., 2011).
G-deletion: type-level analysis

(Colored by most common POS tag)
G-deletion: variable rules analysis

<table>
<thead>
<tr>
<th></th>
<th>Weight</th>
<th>Log odds</th>
<th>%</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verb</td>
<td>.556</td>
<td>.227</td>
<td>.200</td>
<td>89,173</td>
</tr>
<tr>
<td>Noun</td>
<td>.497</td>
<td>-.013</td>
<td>.083</td>
<td>18,756</td>
</tr>
<tr>
<td>Adjective</td>
<td>.447</td>
<td>-.213</td>
<td>.149</td>
<td>4,964</td>
</tr>
<tr>
<td>monosyllable</td>
<td>.071</td>
<td>-2.57</td>
<td>.001</td>
<td>108,804</td>
</tr>
<tr>
<td>Total</td>
<td>.178</td>
<td>112,893</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
G-deletion: variable rules analysis

<table>
<thead>
<tr>
<th></th>
<th>Weight</th>
<th>Log odds</th>
<th>%</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verb</td>
<td>.556</td>
<td>.227</td>
<td>.200</td>
<td>89,173</td>
</tr>
<tr>
<td>Noun</td>
<td>.497</td>
<td>-.013</td>
<td>.083</td>
<td>18,756</td>
</tr>
<tr>
<td>Adjective</td>
<td>.447</td>
<td>-.213</td>
<td>.149</td>
<td>4,964</td>
</tr>
<tr>
<td>monosyllable</td>
<td>.071</td>
<td>-2.57</td>
<td>.001</td>
<td>108,804</td>
</tr>
<tr>
<td>@-message</td>
<td>.534</td>
<td>.134</td>
<td>.205</td>
<td>36,974</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>.178</td>
<td>112,893</td>
</tr>
</tbody>
</table>
G-deletion: variable rules analysis

<table>
<thead>
<tr>
<th>Category</th>
<th>Weight</th>
<th>Log odds</th>
<th>%</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verb</td>
<td>.556</td>
<td>.227</td>
<td>.200</td>
<td>89,173</td>
</tr>
<tr>
<td>Noun</td>
<td>.497</td>
<td>-.013</td>
<td>.083</td>
<td>18,756</td>
</tr>
<tr>
<td>Adjective</td>
<td>.447</td>
<td>-.213</td>
<td>.149</td>
<td>4,964</td>
</tr>
<tr>
<td>monosyllable</td>
<td>.071</td>
<td>-2.57</td>
<td>.001</td>
<td>108,804</td>
</tr>
<tr>
<td>@-message</td>
<td>.534</td>
<td>.134</td>
<td>.205</td>
<td>36,974</td>
</tr>
<tr>
<td>High Euro-Am county</td>
<td>.452</td>
<td>-.194</td>
<td>.117</td>
<td>28,017</td>
</tr>
<tr>
<td>High Afro-Am county</td>
<td>.536</td>
<td>.145</td>
<td>.241</td>
<td>27,022</td>
</tr>
<tr>
<td>High pop density county</td>
<td>.514</td>
<td>.055</td>
<td>.228</td>
<td>27,773</td>
</tr>
<tr>
<td>Low pop density county</td>
<td>.496</td>
<td>-.017</td>
<td>.144</td>
<td>28,228</td>
</tr>
<tr>
<td>Total</td>
<td>.178</td>
<td></td>
<td></td>
<td>112,893</td>
</tr>
</tbody>
</table>
Two broad categories of variables

1. Imported from speech
 - Lexical variables (jawn, hella)
 - Phonologically-inspired variation (-g and -t,-d deletion)
 - These variables bring traces of their social and linguistic properties from speech.

2. Endogenous to digital writing
 - Abbreviations (lls, ctfu, asl, ...)
 - Emoticons (-_-)
 - Why should these vary with geography?
 - How stable is this form of variation?
Table of Contents

Lexical variation

Orthographic variation

Language change as sociocultural influence

Language change in social networks
Change from 2010-2012: lbvs
tell ur momma 2 buy me a car lbvs
Change from 2009-2012:

flight delayed --- just what i need
Diffusion in social networks

Propagation of a cultural innovation requires:

1. Exposure
2. Decision to adopt it

Why is there geographical variation in netspeak?
Diffusion in social networks

Propagation of a cultural innovation requires:

1. **Exposure**
2. Decision to adopt it

Why is there geographical variation in netspeak?

- 97% of “strong ties” (mutual @mentions) are between dyads in the same metro area.
Change from 2009-2012: ctfu

@name lmao! haahhaa ctfu!
The voyage of ctfu

<table>
<thead>
<tr>
<th>Year</th>
<th>Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Cleveland</td>
</tr>
<tr>
<td>2010</td>
<td>Pittsburgh, Philadelphia</td>
</tr>
<tr>
<td>2011</td>
<td>Washington DC, Chicago, NY</td>
</tr>
<tr>
<td>2012</td>
<td>San Francisco, Columbus</td>
</tr>
</tbody>
</table>

This trajectory is hard to explain with models based only on geography or population. Is there a role for cultural influence? (Labov, 2011)
The voyage of ctfu

<table>
<thead>
<tr>
<th>Year</th>
<th>Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Cleveland</td>
</tr>
<tr>
<td>2010</td>
<td>Pittsburgh, Philadelphia</td>
</tr>
<tr>
<td>2011</td>
<td>Washington DC, Chicago, NY</td>
</tr>
<tr>
<td>2012</td>
<td>San Francisco, Columbus</td>
</tr>
</tbody>
</table>

- This trajectory is hard to explain with models based only on geography or population.
- Is there a role for cultural influence? (Labov, 2011)
An aggregate model of lexical diffusion

- Thousands of words have changing frequencies.
- Each spatiotemporal trajectory is idiosyncratic.
- What’s the aggregate picture?
Language change as an autoregressive process

Word counts are binned into 200 metro areas and 165 weeks.

\[\eta_2 \sim N(\eta_1, \Sigma) \]

\[\eta_3 \sim N(\eta_2, \Sigma) \]

\[c_{ctfu,1} \sim \text{Binomial}(f(\eta_{ctfu,1}), N_1) \]

\[c_{hella,1} \sim \text{Binomial}(f(\eta_{hella,1}), N_1) \]

\[... \]

\[c_{ctfu,2} \sim \text{Binomial}(f(\eta_{ctfu,2}), N_2) \]

\[c_{hella,2} \sim \text{Binomial}(f(\eta_{hella,2}), N_2) \]

\[... \]

Estimating parameters of this autoregressive process reveals geographic pathways of diffusion across thousands of words (Eisenstein et al., 2014).
Inference

\[P(\text{words; influence}) \triangleq P(c; a) \]

\[= \sum_{z} P(c, z; a) = \sum_{z} P(c \mid z) P(z; a) \]

(z represents “activation”)
Inference

\[P(\text{words; influence}) \triangleq P(c; a) \]

\[= \sum_z P(c, z; a) = \sum_z \underbrace{P(c \mid z)}_{\text{emission}} \underbrace{P(z; a)}_{\text{transition}} \]

\[(z \text{ represents "activation"}) \]

\[= \int P(c \mid z)P(z; a)dz \quad (\text{uh oh...}) \]
Inference

\[P(\text{words}; \text{influence}) \triangleq P(c; a) \]

\[= \sum_z P(c, z; a) = \sum_z P(c \mid z)P(z; a) \]

\[= \int P(c \mid z)P(z; a)dz \quad (\text{uh oh...}) \]

\[\rightarrow z^{(k)}, k \in \{1, 2, \ldots, K\} \]

\[\approx \sum_k P(c \mid z^{(k)})P(z^{(k)}; a) \]

(\text{Monte Carlo approximation to the rescue!})
Inference

\[P(\text{words; influence}) \triangleq P(c; a) \]

\[= \sum_z P(c, z; a) = \sum_z P(c | z) P(z; a) \]

(z represents “activation”)

\[= \int P(c | z) P(z; a) dz \quad \text{(uh oh...)} \]

\[\rightarrow z^{(k)}, k \in \{1, 2, \ldots, K\} \]

\[\approx \sum_k P(c | z^{(k)}) P(z^{(k)}; a) \]

(Monte Carlo approximation to the rescue!)

\[\hat{a} = \arg \max_a \sum_k P(c | z^{(k)}) P(z^{(k)}; a) \]
Aggregating region-to-region influence

Highly-confident pathways of diffusion (from autoregressive parameter A).
Possible roles for demographics

- **Assortativity**: similar cities evolve together.
- **Influence**: certain types of cities tend to lead, others follow.
Possible roles for demographics

- **Assortativity**: similar cities evolve together.
- **Influence**: certain types of cities tend to lead, others follow.

- 2010 US Census gives detailed demographics for each city.
- Are there types of demographic relationships that are especially frequent among linked cities?
Logistic regression

Cleveland

Location: -81.6, 41.5
Population: 2 million
Median income: 60,200
% Renters: 33.3%
% African American: 21.2%
...

Philadelphia

Location: -75.2, 39.9
Population: 6 million
Median income: 75,700
% Renters: 31.6%
% African American: 22.1%
...
Logistic regression

Cleveland
Location: -81.6, 41.5
Population: 2 million
Median income: 60,200
% Renters: 33.3%
% African American: 21.2%
...

Philadelphia
Location: -75.2, 39.9
Population: 6 million
Median income: 75,700
% Renters: 31.6%
% African American: 22.1%
...

Feature vector
Distance: 715 km
Log pop sum: 30.1
Abs diff log median income: 0.2
Abs diff % renters: 1.7%
Abs diff % Af-Am: 0.9%
...
Raw diff log median income: -0.2
Raw diff % renters: 1.7%
Raw diff % Af-Am: 0.9%
...
Regression coefficients

Symmetric effects
Negative value means:
links are associated with
greater similarity between
sender/receiver

Asymmetric effects
Positive value means:
links are associated with
sender having a
higher value than receiver

- Assortativity by race (of cities!) even more important than geography.
- Asymmetric effects are weaker, but bigger, younger metros tend to lead.
Propagation of a cultural innovation requires:

1. **Exposure**
2. Decision to adopt it

Why is there geographical variation in netspeak?

- 97% of “strong ties” (mutual @mentions) are between dyads in the same metro area.
Diffusion in social networks

Propagation of a cultural innovation requires:

1. Exposure
2. **Decision** to adopt it

Why is there geographical variation in netspeak?

- 97% of “strong ties” (mutual @mentions) are between dyads in the same metro area.
- Diffusion depends on sociocultural affinity and influence, not just geography and population.
One more example: ard

lol u’ll be ard
Stable variation

- In three years, *ard* never gets from Baltimore to DC! (It gets to Philadelphia within a year.)
- The connection to spoken variation is tenuous.
- So what explains this stability?
Table of Contents

Lexical variation

Orthographic variation

Language change as sociocultural influence

Language change in social networks
From macro to micro

Macro-level variation and change must ground out in individual linguistic decisions.

- With social media data, we can distinguish the contexts in which feature counts appear.
- One way to define context is by the intended audience.
- Variables that are used for smaller, more local audiences may be more persistent.

(Pavalanathan & Eisenstein, 2015)
Our full programme will follow in couple of days! We're very excited about it - so many great talks!
Addressed
Logistic regression

- **Dependent variable**: does the tweet contain a local word (e.g., *lbvs, hella, jawn*)
- **Predictors**
 - **Message type**: broadcast, addressed, #-initial
 - **Controls**: message length, author statistics
Small audience \(\rightarrow\) less standard language
Local audience → less standard language
Diffusion in social networks

Propagation of a cultural innovation requires:

1. Exposure
2. Decision to adopt it

Why is there geographical variation in netspeak?

- 97% of “strong ties” (mutual @mentions) are between dyads in the same metro area.
- Diffusion depends on sociocultural affinity and influence, not just geography and population.
Diffusion in social networks

Propagation of a cultural innovation requires:

1. **Exposure**
2. Decision to adopt it

Why is there geographical variation in netspeak?

- 97% of “strong ties” (mutual @mentions) are between dyads in the same metro area.
- Diffusion depends on sociocultural affinity and influence, not just geography and population.
- Non-standard features are more likely to be transmitted along strong, local ties.
Social media is transforming written language!

Social media writing is *variable* and *dynamic*, but not noisy: there is always an underlying sociolinguistic structure.

Recovering this structure promises new insights for both linguistics and language technology.

Next steps:

- modeling individual linguistic decisions
- applying these results to build more robust language technology
Thanks!

To my collaborators:

- David Bamman (CMU)
- Fernando Diaz (MSR)
- Naman Goyal (Georgia Tech)
- Brendan O’Connor (UMass)
- Ioannis Paparrizos (Columbia)
- Umashanthi Pavalanathan (Georgia Tech)
- Tyler Schnoebelen (Stanford and Idibon)
- Noah A. Smith (University of Washington)
- Hanna Wallach (MSR and UMass)
- Eric P. Xing (CMU)

And to the National Science Foundation.

Local audience → less standard language

More mentions by users in **same** metro area

More mentions by users in **other** metro areas

Messages containing local variable

Messages not containing local variable
Why raw word counts won’t work

We observe counts $c_{w,r,t}$ for word w in region r at time t. How does $c_{w,r,t}$ influence $c_{w,r',t+1}$?

- Both word counts and city sizes follow power law distributions, with lots of zero counts.

- Exogenous events such as pop culture and weather introduce global temporal effects.
- Twitter’s sampling rate is inconsistent, both spatially and temporally.
Latent activation model

c_{w,r,t} \sim \text{Binomial}(\beta_{w,r,t}, s_{r,t})
Latent activation model

\[c_{w,r,t} \sim \text{Binomial}(\beta_{w,r,t}, s_{r,t}) \]
\[\beta_{w,r,t} = \text{Logistic}(\nu_{w,t} + \mu_{r,t} + \eta_{w,r,t}) \]
Latent activation model

\[c_{w,r,t} \sim \text{Binomial}(\beta_{w,r,t}, s_{r,t}) \]
\[\beta_{w,r,t} = \text{Logistic}(\nu_{w,t} + \mu_{r,t} + \eta_{w,r,t}) \]

- Base word log-probability
Latent activation model

\[c_{w,r,t} \sim \text{Binomial}(\beta_{w,r,t}, s_{r,t}) \]
\[\beta_{w,r,t} = \text{Logistic}(\nu_{w,t} + \mu_{r,t} + \eta_{w,r,t}) \]

- Base word log-probability
- City-specific “verbosity”
Latent activation model

\[c_{w,r,t} \sim \text{Binomial}(\beta_{w,r,t}, s_{r,t}) \]
\[\beta_{w,r,t} = \text{Logistic}(\nu_{w,t} + \mu_{r,t} + \eta_{w,r,t}) \]

- Base word log-probability
- City-specific “verbosity”
- Spatio-temporal activation
Dynamics model

\[c_{w,r,t} \sim \text{Binomial}(\beta_{w,r,t}, s_{r,t}) \]
\[\beta_{w,r,t} = \text{Logistic}(\nu_{w,t} + \mu_{r,t} + \eta_{w,r,t}) \]
\[\eta_{w,r,t} \sim \text{Normal}(\sum_{r'} a_{r'\rightarrow r} \eta_{w,r',t-1}, \gamma_{w,r}) \]

- \(a_{i\rightarrow j} \) captures the linguistic “influence” of city \(i \) on city \(j \).
- If \(\eta_{j,t+1} = \eta_{i,t} \), then \(a_{i\rightarrow j} = 1 \), and \(a_{i\rightarrow j} = 0 \).
- If \(\eta_{j} \) and \(\eta_{i} \) co-evolve smoothly, then \(a_{i,j} > 0 \) and \(a_{j,i} > 0 \).