Section 2.3

Functions

Definition: Let A and B be sets. A function (mapping, map) f from A to B, denoted $f: A \rightarrow B$, is a subset of $A \times B$ such that

$$\forall x [x \in A \rightarrow \exists y [y \in B \wedge <x, y> \in f]]$$

and

$$[<x, y_1> \in f \wedge <x, y_2> \in f] \rightarrow y_1 = y_2$$

Note: f associates with each x in A one and only one y in B.

A is called the *domain* and B is called the *codomain*.

If $f(x) = y$

- y is called the *image* of x under f
- x is called a *preimage* of y

(note there may be more than one preimage of y but there is only one image of x).

The *range* of f is the set of all images of points in A under f. We denote it by $f(A)$.
If S is a subset of A then

$$f(S) = \{ f(s) \mid s \text{ in } S \}.$$

Example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>X</td>
</tr>
<tr>
<td>b</td>
<td>Y</td>
</tr>
<tr>
<td>c</td>
<td>Y</td>
</tr>
<tr>
<td>d</td>
<td>Z</td>
</tr>
</tbody>
</table>

- $f(a) = Z$
- the image of d is Z
- the domain of f is $A = \{a, b, c, d\}$
- the codomain is $B = \{X, Y, Z\}$
- $f(A) = \{Y, Z\}$
- the preimage of Y is b
- the preimages of Z are a, c and d
- $f(\{c,d\}) = \{Z\}$
Injections, Surjections and Bijections

Let f be a function from A to B.

Definition: f is *one-to-one* (denoted 1-1) or *injective* if preimages are unique.

Note: this means that if $a \neq b$ then $f(a) \neq f(b)$.

Definition: f is *onto* or *surjective* if every y in B has a preimage.

Note: this means that for every y in B there must be an x in A such that $f(x) = y$.

Definition: f is *bijective* if it is surjective and injective (one-to-one and onto).

Examples:

The previous Example function is neither an injection nor a surjection. Hence it is not a bijection.

\[
\begin{array}{ccc}
A &
\rightarrow & B \\
\text{a} & \rightarrow & \text{X} \\
\text{b} & \rightarrow & \text{Y} \\
\text{c} & \rightarrow & \text{Y} \\
\text{d} & \rightarrow & \text{Z} \\
\end{array}
\]

Surjection but not an injection
Injection but not a surjection

Surjection and an injection, hence a bijection

Note: Whenever there is a bijection from A to B, the two sets must have the same number of elements or the same cardinality.

That will become our definition, especially for infinite sets.
Examples:

Let $A = B = \mathbb{R}$, the reals. Determine which are injections, surjections, bijections:

- $f(x) = x$,
- $f(x) = x^2$,
- $f(x) = x^3$,
- $f(x) = x + \sin(x)$,
- $f(x) = |x|$

Let E be the set of even integers $\{0, 2, 4, 6, \ldots\}$.

Then there is a bijection f from N to E, the even nonnegative integers, defined by

$$f(x) = 2x.$$

Hence, the set of even integers has the same cardinality as the set of natural numbers.

OH, NO! IT CAN’T BE....E IS ONLY HALF AS BIG!!!

Sorry! It gets worse before it gets better.
Inverse Functions

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted f^{-1}, is the function from B to A defined as

$$f^{-1}(y) = x \iff f(x) = y$$

Example:

Let f be defined by the diagram:

![Diagram](image)

Note: No inverse exists unless f is a bijection.
Definition: Let S be a subset of B. Then

$$f^{-1}(S) = \{ x \mid f(x) \in S \}$$

Note: f need not be a bijection for this definition to hold.

Example:

Let f be the following function:

$$f^{-1}(\{Z\}) = \{c, d\}$$

$$f^{-1}(\{X, Y\}) = \{a, b\}$$
Composition

Definition: Let \(f: B \rightarrow C, \) \(g: A \rightarrow B. \) The *composition of \(f \) with \(g, * \) denoted \(f \circ g, \) is the function from \(A \) to \(C \) defined by

\[
f \circ g(x) = f(g(x))
\]

Examples:

\[
\begin{array}{cccccc}
A & g & B & f & C \\
| a | o | v | o | h \\
| b | o | w | o | i \\
| c | o | x | o | j \\
| d | o | y | o |
\end{array}
\]

\[
\begin{array}{cccccc}
A & f \circ g & C \\
| a | o | h \\
| b | o | i \\
| c | o | j \\
| d |
\end{array}
\]

If \(f(x) = x^2 \) and \(g(x) = 2x + 1, \) then \(f(g(x)) = (2x+1)^2 \) and \(g(f(x)) = 2x^2 + 1 \)
Definition: The

floor function,

\[f(x) = \lfloor x \rfloor \text{ or } f(x) = \text{floor}(x), \]

is the largest integer less than or equal to \(x \).

The

ceiling function,

\[f(x) = \lceil x \rceil \text{ or } f(x) = \text{ceiling}(x), \]

is the smallest integer greater than or equal to \(x \).

Examples: \(\lfloor 3.5 \rfloor = 3, \lceil 3.5 \rceil = 4. \)

Note: the floor function is equivalent to truncation for positive numbers.

Example:

Suppose \(f: B \rightarrow C, \ g: A \rightarrow B \) and \(f \circ g \) is injective.

What can we say about \(f \) and \(g \)?

- We know that if \(a \neq b \) then \(f(g(a)) \neq f(g(b)) \) since the composition is injective.
- Since f is a function, it cannot be the case that $g(a) = g(b)$ since then f would have two different images for the same point.

- Hence, $g(a) \neq g(b)$

It follows that g must be an injection.

However, f need not be an injection (you show).