Binary relations establish a relationship between elements of two sets

Definition: Let A and B be two sets. A binary relation from A to B is a subset of $A \times B$.

In other words, a binary relation R is a set of ordered pairs (a_i, b_i) where $a_i \in A$ and $b_i \in B$.

Notation: We say that
- $a R b$ if $(a, b) \in R$
- $a \not R b$ if $(a, b) \notin R$

Definition: A relation on the set A is a relation from A to A. That is, a relation on the set A is a subset of $A \times A$.

What is an equivalence relation?

Informally: An equivalence relation partitions elements of a set into classes of “equivalent” objects.

Formally: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

- How can a relation define equivalent objects if an element isn’t equivalent to itself?
- If x is equivalent to y, and y is equivalent to z, shouldn’t x also be equivalent to z?

Definition: Two elements a and b that are related by some equivalence relation are called equivalent. We denote this by $a \sim b$ (or $a \sim_R b$).
Example: Comparing Magnitudes

Example: Let R be the relation on the set of integers such that $a R b$ if and only if $a = b$ or $a = -b$. Is R an equivalence relation?

Intuition says yes, so let’s verify:

- Is R reflexive?
- Is R symmetric?
- Is R transitive?

Conclusion: Since R is symmetric, reflexive, and transitive, we know that R is an equivalence relation.

Congruence Modulo m

Example: Let m be a positive integer greater than 1. Show that $R = \{(a,b) \mid a \equiv b \pmod{m}\}$ is an equivalence relation.

Solution:

- **Recall:** $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$
- Is R reflexive?
 - $a \equiv a \pmod{m} \leftrightarrow m \mid (a - a)$
 - $m \mid 0$ since $0 = 0 \times m$
 - Yes, R is reflexive
- Is R symmetric?
 - If $a \equiv b \pmod{m}$, then $m \mid (a - b)$, so $(a - b) = km$ for some k
 - Note that $(b - a) = -km$
 - So $b \equiv a \pmod{m}$ and R is symmetric
- Is R transitive?
 - $a \equiv b \pmod{m}$ means that $(a - b) = km$, so $a = km + b$
 - $b \equiv c \pmod{m}$ means that $(b - c) = jm$, so $c = b - jm$
 - Note that $a - c = (km + b) - (b - jm) = km + jm = (k+j)m$
 - Since $m \mid (a - c)$, $a \equiv c \pmod{m}$, and R is transitive
- **Conclusion:** R is an equivalence relation
What about the “divides” relation?

Example: Is the “divides” relation on positive integers an equivalence relation?

Solution:
- Reflexive?
- Symmetric?
- Transitive?

Conclusion: Since the “divides” relation is not symmetric, it cannot be an equivalence relation.

String Length

Example: Suppose that R is the relation on the set of strings of English letters such that $a R b$ if and only if $l(a) = l(b)$, where $l(x)$ is the length of string x. Is R an equivalence relation?

Solution:
- Reflexive?
- Symmetric?
- Transitive?

$R c.$

Conclusion: R is an equivalence relation.
Magnitude of differences

Example: Let R be the relation on the set of real numbers such that \(x \, R \, y \) iff \(x \) and \(y \) are real numbers that differ by less than 1, i.e., \(|x - y| < 1\). Is \(R \) an equivalence relation?

Solution:
- First, a few test cases:
 - \(1.1 \, R \, 2.0 \)?: Yes, since
 - \(1.1 \, R \, 3.0 \)?: No, since
 - \(2.0 \, R \, 2.5 \)?: Yes, since
- Reflexive?
- Symmetric?
- Transitive?
- Conclusion: Since \(R \) is not transitive, it cannot be an equivalence relation.

What is an equivalence class?

Definition: Let \(R \) be an equivalence relation on a set \(A \). The set of all elements that are related to some element \(a \) is called the equivalence class of \(a \).

Note: We denote the equivalence class of element \(a \) under relation \(R \) as \([a]_R\). If only one relation is being considered, we can drop the subscript and denote the equivalence class of \(a \) as \([a]\).

Example: What are the equivalence classes of 0 and 1 under congruence modulo 4?
- \([0]\) contains all integers \(x \) such that \(x \equiv 0 \pmod{4} \)
- \([1]\) contains all integers \(x \) such that \(x \equiv 1 \pmod{4} \)
- So \([0]\) = \([-8, -4, 0, 4, 8, ...]\)
- And \([1]\) = \([-7, -3, 1, 5, 9, ...]\)
Variable names in C

Example: Some compilers for the C programming language truncate variable names after the first 31 characters. As a result, any two variable names that agree in the first 31 characters are considered to be identical. What are the equivalence classes of the variable names “Number_of_tropical_storms”, “Number_of_named_tropical_storms”, and “Number_of_named_tropical_storms_in_the_Atlantic_in_2005”?

Solution:
- [Number_of_tropical_storms] =
- [Number_of_named_tropical_storms] =
- [Number_of_named_tropical_storms_in_the_Atlantic_in_2005] =

An equivalence relation divides a set into disjoint subsets

(Contrived) Example: At State University, a student can either major in computer science or art history, but not both. Let R be the relation defined such that a R b if a and b are in the same major.

Observations:
- R is an equivalence relation (Why?)
- R breaks the set S of all students into two subsets:
 - C = Students majoring in computer science
 - A = Students majoring in art history
- No student in C is also in A
- No student in A is also in C
- C and A are equivalence classes of S
Equivalence classes are either equal or disjoint

Theorem: If R is an equivalence relation on some set A, then the following three statements are equivalent: (i) a R b, (ii) \([a] = [b]\), and (iii) \([a] \cap [b] \neq \emptyset\).

Proof:

- To prove this, we'll prove that (i) \(\rightarrow\) (ii), (ii) \(\rightarrow\) (iii), and (iii) \(\rightarrow\) (i)

 - (i) \(\rightarrow\) (ii)
 - Assume that a R b
 - To prove that \([a] = [b]\), we will show that \([a] \subseteq [b]\) and \([b] \subseteq [a]\)
 - Suppose that \(c \in [a]\), then a R c
 - Since a R b and R is symmetric, we have that b R a
 - Since R is transitive, we have that b R a and a R c, so b R c
 - This means that \(c \in [b]\) and thus that \([a] \subseteq [b]\)
 - The proof that \([b] \subseteq [a]\) is identical

Proof (cont.):

- (ii) \(\rightarrow\) (iii)
 - Assume that \([a] = [b]\)
 - \([a] \cap [b]\) is non-empty since \(a \in [a]\)

- (iii) \(\rightarrow\) (i)
 - Assume that \([a] \cap [b] \neq \emptyset\)
 - This means that there exists some element \(c \in [a] \cap [b]\)
 - So, a R c and b R c
 - By symmetry, we have that c R b
 - By transitivity, we have that a R c and c R b means a R b

Since (i) \(\rightarrow\) (ii), (ii) \(\rightarrow\) (iii), and (iii) \(\rightarrow\) (i), all three statements are equivalent.
Equivalence classes partition a set

Definition: A partition of a set S is a collection of disjoint subsets that have S as their union.

![Diagram showing partition of a set](image)

Observation: The equivalence classes of a set partition that set.
- $U_{eq} [a] = A$ since each $a \in A$ is in its own equivalence class
- By our theorem, we know that either $[a] = [b]$, or $[a] \cap [b] = \emptyset$

The integers (mod m), redux

Example: What are the sets in the partition produced by the equivalence relation equivalence mod 4?

Solution:
- $[0] = \{\ldots, -8, -4, 0, 4, 8, \ldots\}$
- $[1] = \{\ldots, -7, -3, 1, 5, 9, \ldots\}$
- $[2] = \{\ldots, -6, -2, 2, 6, 10, \ldots\}$
- $[3] = \{\ldots, -5, -1, 3, 7, 11, \ldots\}$

- Note that each integer is in one of these sets, and each set is disjoint. Thus, these equivalence classes partition the set \mathbb{Z}.
Conversely, a partition of a set describes an equivalence relation

Example: List the ordered pairs in the equivalence relation R produced by the partition \(A = \{1, 2, 3\} \), \(B = \{4, 5\} \), \(C = \{6\} \) of \(S = \{1, 2, 3, 4, 5, 6\} \).

Solution:
- From \(A = \{1, 2, 3\} \) we have
 - \((1,1), (1,2), (1,3) \in R\)
 - \((2,1), (2,2), (2,3) \in R\)
 - \((3,1), (3,2), (3,3) \in R\)
- From \(B = \{4, 5\} \) we have
 - \((4,4), (4,5) \in R\)
 - \((5,4), (5,5) \in R\)
- From \(C = \{6\} \) we have
 - \((6,6) \in R\)

\[\text{Group Work!} \]

Problem 1: Which of the following relations on \(\{0, 1, 2, 3\} \) are equivalence relations? Which properties are lacking from those relations that are not equivalence relations?
1. \[\{(0, 0), (1,1), (2,2), (3,3)\}\]
2. \[\{(0,0), (0,2), (2,0), (2,2), (2,3), (3,2), (3,3)\}\]

Problem 2: Which of these collections of sets are partitions of the set \(S = \{1, 2, 3, 4, 5, 6\} \)?
1. \[\{1,2\}, \{2,3,4\}, \{4,5,6\}\]
2. \[\{2,4,6\}, \{1,3,5\}\]
3. \[\{1,4,5\}, \{2, 6\}\]