Bayes’ Theorem

Bayes’ Theorem allows us to relate the conditional and marginal probabilities of two random events.

What?!!?

In English: Bayes’ Theorem will help us assess the probability that an event occurred given only partial evidence.

Doesn’t our formula for conditional probability do this already?

We can’t always use this formula directly…

A Motivating Example

Suppose that a certain opium test correctly identifies a person who uses opiates as testing positive 99% of the time, and will correctly identify a non-user as testing negative 99% of the time. If a company suspects that 0.5% of its employees are opium users, what is the probability that an employee that tests positive for this drug is actually a user?

Question: Can we use our simple conditional probability formula?

\[p(E | F) = \frac{p(E \cap F)}{p(F)} \]

X is a user X tested positive
In situations like those on the last slide, Bayes’ theorem can help!

Essentially, Bayes’ theorem will allow us to calculate $P(E|F)$ assuming that we know (or can derive):
- $P(E)$: Probability that X is a user
- $P(F|E)$: Test success rate
- $P(F|E)$: Test false positive rate
- $P(E)\cap P(F|E)$: Probability that X is an opium user given a positive test

Returning to our earlier example:
- Let $E = “Person X is an opium user”$
- Let $F = “Person X tested positive for opium”$

It looks like Bayes’ Theorem could help in this case...

New Notation

Today, we will use the notation E^C to denote the complementary event of E

That is:

$$E^C = E^C$$
A Simple Example

We have two boxes. The first contains two green balls and seven red balls. The second contains four green balls and three red balls. Bob selects a ball by first choosing a box at random. He then selects one of the balls from that box at random. If Bob has selected a red ball, what is the probability that he took it from the first box?

Picking the problem apart...

First, let’s define a few events relevant to this problem:

- Let \(E \) = Bob has chosen a red ball
- By definition \(E^c \) = Bob has chosen a green ball
- Let \(F \) = Bob chose his ball from this first box
- Therefore, \(F^c \) = Bob chose his ball from the second box

We want to find the probability that Bob chose from the first box, given that he picked a red ball. That is, we want \(p(F | E) \).

Goal: Given that \(p(F | E) = p(F \cap E) / p(E) \), use what we know to derive \(p(F \cap E) \) and \(p(E) \).
What do we know?

We have two boxes. The first contains two green balls and seven red balls. The second contains four green balls and three red balls. Bob selects a ball by first choosing a box at random. He then selects one of the balls from that box at random. If Bob has selected a red ball, what is the probability that he took it from the first box?

Statement: Bob selects a ball by first choosing a box at random
- Bob is equally likely to choose the first box, or the second box
- \(p(F) = p(F^c) = 1/2 \)

Statement: The first contains two green balls and seven red balls
- The first box has nine balls, seven of which are red
- \(p(E|F) = 7/9 \)

Statement: The second contains four green balls and three red balls
- The second box contains seven balls, three of which are red
- \(p(E|F^c) = 3/7 \)

Now, for a little algebra...

The end goal: Compute \(p(F|E) = \frac{p(F \cap E)}{p(E)} \)

Note that \(p(E|F) = \frac{p(E \cap F)}{p(F)} \)
- If we multiply by \(p(F) \), we get \(p(E \cap F) = p(E|F)p(F) \)
- Further, we know that \(p(E|F) = 7/9 \) and \(p(F) = 1/2 \)
- So \(p(E \cap F) = \frac{7}{9} \times \frac{1}{2} = \frac{7}{18} \)

Similarly, \(p(E \cap F^c) = p(E|F^c)p(F^c) = \frac{3}{7} \times \frac{1}{2} = \frac{3}{14} \)

Observation: \(E = (E \cap F) \cup (E \cap F^c) \)
- This means that \(p(E) = p(E \cap F) + p(E \cap F^c) \)
- \(= \frac{7}{18} + \frac{3}{14} \)
- \(= \frac{49}{126} + \frac{27}{126} \)
- \(= \frac{76}{126} \)
- \(= \frac{38}{63} \)

Recall:
- \(p(F) = p(F^c) = 1/2 \)
- \(p(E|F) = 7/9 \)
- \(p(E|F^c) = 3/7 \)
Denouement

The end goal: Compute $p(F \mid E) = p(F \cap E) / p(E)$

So, $p(F \mid E) = (7/18) / (38/63) = 0.645$

How did we get here?
1. Extract what we could from the problem definition itself
2. Rearrange terms to derive $p(F \cap E)$ and $p(E)$
3. Use our trusty definition of conditional probability to do the rest!

The reasoning that we used in the last problem essentially derives Bayes’ Theorem for us!

Bayes’ Theorem: Suppose that E and F are events from some sample space S such that $p(E) \neq 0$ and $p(F) \neq 0$. Then:

$$p(F \mid E) = \frac{p(E \mid F)p(F)}{p(E \mid F)p(F) + p(E \mid F^c)p(F^c)}$$

Proof:
- The definition of conditional probability says that
 \forall $p(F \mid E) = p(F \cap E) / p(E)$
 \forall $p(E \mid F) = p(E \cap F) / p(F)$
- This means that
 \forall $p(E \cap F) = p(F \mid E)p(E)$
 \forall $p(E \cap F) = p(E \mid F)p(F)$
- So $p(F \mid E)p(E) = p(E \mid F)p(F)$
- Therefore, $p(F \mid E) = p(E \mid F)p(F) / p(E)$
Proof (continued)

Note: To finish, we must prove \(p(E) = p(E \mid F)p(F) + p(E \mid F^C)p(F^C) \)

- Observe that \(E = E \cap S \)
 - \(= E \cap (F \cup F^C) \)
 - \(= (E \cap F) \cup (E \cap F^C) \)
- Note also that \((E \cap F)\) and \((E \cap F^C)\) are disjoint (i.e., no x can be in both \(F \) and \(F^C \))
- This means that \(p(E) = p(E \cap F) + p(E \cap F^C) \)
- We already have shown that \(p(E \cap F) = p(E \mid F)p(F) \)
- Further, since \(p(E \mid F^C) = p(E \cap F^C) / p(F^C) \), we have that \(p(E \cap F^C) = p(E \mid F^C)p(F^C) \)
- So \(p(E) = p(E \cap F) + p(E \cap F^C) = p(E \mid F)p(F) + p(E \mid F^C)p(F^C) \)

Putting everything together, we get:

\[
p(F \mid E) = \frac{p(E \mid F)p(F)}{p(E \mid F)p(F) + p(E \mid F^C)p(F^C)}
\]

\(\Box \)

And why is this useful?

In a nutshell, Bayes’ Theorem is useful if you want to find \(p(F \mid E) \), but you **don’t know** \(p(E \cap F) \) or \(p(E) \).
Here’s a general solution tactic

Step 1: Identify the independent events that are being investigated. For example:
- $F = \text{Bob chooses the first box}$, $F^c = \text{Bob chooses the second box}$
- $E = \text{Bob chooses a red ball}$, $E^c = \text{Bob chooses a green ball}$

Step 2: Record the probabilities identified in the problem statement. For example:
- $p(F) = p(F^c) = 1/2$
- $p(E|F) = 7/9$
- $p(E|F^c) = 3/7$

Step 3: Plug into Bayes’ formula and solve

Example: Pants and Skirts

Suppose there is a co-ed school having 60% boys and 40% girls as students. The girl students wear trousers or skirts in equal numbers; the boys all wear trousers. An observer sees a (random) student from a distance; all they can see is that this student is wearing trousers. What is the probability this student is a girl?

Step 1: Set up events
- $E = X$ is wearing pants
- $E^c = X$ is wearing a skirt
- $F = X$ is a girl
- $F^c = X$ is a boy

Step 2: Extract probabilities from problem definition
- $p(F) = 0.4$
- $p(F^c) = 0.6$
- $p(E|F) = p(E^c|F) = 0.5$
- $p(E|F^c) = 1$
Pants and Skirts (continued)

\[p(F \mid E) = \frac{p(E \mid F)p(F)}{p(E \mid F)p(F) + p(E \mid F^C)p(F^C)} \]

Recall:
- \(p(F) = 0.4 \)
- \(p(F^C) = 0.6 \)
- \(p(E \mid F) = p(E \mid F^C) = 0.5 \)
- \(p(E \mid F^C) = 1 \)

Step 3: Plug in to Bayes’ Theorem
- \(p(F \mid E) = (0.5 \times 0.4) / (0.5 \times 0.4 + 1 \times 0.6) \)
- \(= 0.2 / 0.8 \)
- \(= 1/4 \)

Conclusion: There is a 25% chance that the person seen was a girl, given that they were wearing pants.

Drug screening, revisited

Suppose that a certain opium test correctly identifies a person who uses opiates as testing positive 99% of the time, and will correctly identify a non-user as testing negative 99% of the time. If a company suspects that 0.5% of its employees are opium users, what is the probability that an employee that tests positive for this drug is actually a user?

Step 1: Set up events
- \(F = X \) is an opium user
- \(F^C = X \) is not an opium user
- \(E = X \) tests positive for opiates
- \(E^C = X \) tests negative for opiates

Step 2: Extract probabilities from problem definition
- \(p(F) = 0.005 \)
- \(p(F^C) = 0.995 \)
- \(p(E \mid F) = 0.99 \)
- \(p(E \mid F^C) = 0.01 \)
Drug screening (continued)

\[p(F \mid E) = \frac{p(E \mid F)p(F)}{p(E \mid F)p(F) + p(E \mid F^C)p(F^C)} \]

Step 3: Plug in to Bayes’ Theorem
- \(p(F \mid E) = \frac{(0.99 \times 0.005)}{(0.99 \times 0.005 + 0.01 \times 0.995)} \)
- \(= 0.3322 \)

Conclusion: If an employee tests positive for opiate use, there is only a 33% chance that they are actually an opium user!

Application: Spam filtering

Definition: Spam is unsolicited bulk email

I didn’t ask for it, I probably don’t want it
Sent to lots of people…

In recent years, spam has become increasingly problematic. For example, in 2006:
- Spam accounted for > 40% of all email sent
- This is over 12.4 billion spam messages!

To combat this problem, people have developed spam filters based on Bayes’ theorem!
How does a Bayesian spam filter work?

Essentially, these filters determine the probability that a message is spam, given that it contains certain keywords.

\[
p(F | E) = \frac{p(E | F)p(F)}{p(E | F)p(F) + p(E | F^C)p(F^C)}
\]

In the above equation:
- \(p(E | F) \) = Probability that our keyword occurs in spam messages
- \(p(E | F^C) \) = Probability that our keyword occurs in legitimate messages
- \(p(F) \) = Probability that an arbitrary message is spam
- \(p(F^C) \) = Probability that an arbitrary message is legitimate

Question: How do we derive these parameters?

We can learn these parameters by examining historical email traces

Imagine that we have a corpus of email messages...

We can ask a few intelligent questions to learn the parameters of our Bayesian filter:
- How many of these messages do we consider spam?
- In the spam messages, how often does our keyword appear?
- In the good messages, how often does our keyword appear?

Aside: This is what happens every time you click the “mark as spam” button in your email client!

Given this information, we can apply Bayes' theorem!
Filtering spam using a single keyword

Suppose that the keyword “Rolex” occurs in 250 of 2000 known spam messages, and in 5 of 1000 known good messages. Estimate the probability that an incoming message containing the word “Rolex” is spam, assuming that it is equally likely that an incoming message is spam or not spam. If our threshold for classifying a message as spam is 0.9, will we reject this message?

Step 1: Define events
- \(F = \) message is spam
- \(F^C = \) message is good
- \(E = \) message contains the keyword “Rolex”
- \(E^C = \) message does not contain the keyword “Rolex”

Step 2: Gather probabilities from the problem statement
- \(p(F) = p(F^C) = 0.5 \)
- \(p(E|F) = \frac{250}{2000} = 0.125 \)
- \(p(E|F^C) = \frac{5}{1000} = 0.005 \)

Step 3: Plug in to Bayes’ Theorem
- \(p(F|E) = \frac{p(E|F)p(F)}{p(E|F)p(F) + p(E|F^C)p(F^C)} \)
- \(p(F|E) = \frac{0.125 \times 0.5}{0.125 \times 0.5 + 0.005 \times 0.5} \)
- \(= \frac{0.125}{0.125 + 0.005} \)
- \(= 0.962 \)

Conclusion: Since the probability that our message is spam given that it contains the string “Rolex” is approximately \(0.962 > 0.9 \), we will discard the message.
Problems with this simple filter

How would you choose a single keyword/phrase to use?
- “All natural”
- “Nigeria”
- “Click here”
- ...

Users get upset if false positives occur, i.e., if legitimate messages are incorrectly classified as spam
- When was the last time you checked your spam folder?

How can we fix this?
- Choose keywords s.t. \(p(\text{spam} | \text{keyword})\) is very high or very low
- Filter based on multiple keywords (see book)

Final Thoughts

- Conditional probability is very useful

- Bayes’ theorem
 - Helps us assess conditional probabilities
 - Has a range of important applications