Once and for all, what are prime numbers?

Definition: A prime number is a positive integer p that is divisible by only 1 and itself. If a number is not prime, it is called a composite number.

Mathematically: p is prime $\iff \forall x \in \mathbb{Z}^* \ [(x \neq 1 \land x \neq p) \rightarrow x \mid p]$

Examples: Are the following numbers prime or composite?

- 23
- 42
- 17
- 3
- 9
Any positive integer can be represented as a unique product of prime numbers!

Theorem (The Fundamental Theorem of Arithmetic): Every positive integer greater than 1 can be written uniquely as a prime or the product of two or more primes where the prime factors are written in order of nondecreasing size.

Examples:
- $100 = 2 \times 2 \times 5 \times 5 = 2^2 \times 5^2$
- $641 = 641$
- $999 = 3 \times 3 \times 3 \times 37 = 3^3 \times 37$
- $1024 = 2 \times 2 = 2^{10}$

Note: Proving the fundamental theorem of arithmetic requires some mathematical tools that we have not yet learned.

This leads to a related theorem...

Theorem: If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.

Proof:
- If n is composite, then it has a positive integer factor a with $1 < a < n$ by definition. This means that $n = ab$, where b is an integer greater than 1.
- Assume $a > \sqrt{n}$ and $b > \sqrt{n}$. Then $ab > \sqrt{n}/n = n$, which is a contradiction. So either $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.
- Thus, n has a divisor less than \sqrt{n}.
- By the fundamental theorem of arithmetic, this divisor is either prime, or is a product of primes. In either case, n has a prime divisor less than \sqrt{n}. \[\blacksquare\]
Applying contraposition leads to a naive primality test

Corollary: If \(n \) is a positive integer that does not have a prime divisor less than \(\sqrt{n} \), then \(n \) prime.

Example: Is 101 prime?
- The primes less than \(\sqrt{101} \) are 2, 3, 5, and 7
- Since 101 is not divisible by 2, 3, 5, or 7, it must be prime

Example: Is 1147 prime?
- The primes less than \(\sqrt{1147} \) are 2, 3, 5, 7, 11, 13, 17, 23, 29, and 31
- \(1147 = 31 \times 37 \), so 1147 must be composite

This approach can be generalized

The Sieve of Eratosthenes is a brute-force algorithm for finding all prime numbers less than some value \(n \).

Step 1: List the numbers less than \(n \)

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2: If the next available number is less than \(\sqrt{n} \), cross out all of its multiples

Step 3: Repeat until the next available number is > \(\sqrt{n} \)

Step 4: All remaining numbers are prime
How many primes are there?

Theorem: There are infinitely many prime numbers.

Proof: By contradiction
- Assume that there are only a finite number of primes \(p_1, \ldots, p_n \).
- Let \(Q = p_1 \times p_2 \times \ldots \times p_n + 1 \) be a number.
- By the fundamental theorem of arithmetic, \(Q \) can be written as the product of two or more primes.
- Note that no \(p_j \) divides \(Q \).
- Therefore, there must be some prime number not in our list. This prime number is either \(Q \) (if \(Q \) is prime) or a prime factor of \(Q \) (if \(Q \) is composite).
- This is a contradiction since we assumed that all primes were listed. Therefore, there are infinitely many primes. \(\square \)

This is a non-constructive existence proof!

Group work!

Problem: Is 91 prime?
Greatest common divisors

Definition: Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b, denoted by $\text{gcd}(a, b)$.

Note: We can (naively) find GCDs by comparing the common divisors of two numbers.

Example: What is the GCD of 24 and 36?
- Factors of 24: 1, 2, 3, 4, 6, 12
- Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18
- $\therefore \text{gcd}(24, 36) = 12$

Sometimes, the GCD of two numbers is 1

Example: What is $\text{gcd}(17, 22)$?
- Factors of 17: 1, 17
- Factors of 22: 1, 2, 11, 22
- $\therefore \text{gcd}(17, 22) = 1$

Definition: If $\text{gcd}(a, b) = 1$, we say that a and b are relatively prime, or coprime. We say that a_1, a_2, \ldots, a_n are pairwise relatively prime if $\text{gcd}(a_i, a_j) = 1 \forall i, j$.

Example: Are 10, 17, and 21 pairwise coprime?
- Factors of 10: 1, 2, 5, 10
- Factors of 17: 1, 17
- Factors of 21: 1, 3, 7, 21

Yes!
We can leverage the fundamental theorem of arithmetic to develop a better algorithm.

Let: \(a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n} \) and \(b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n} \)

Then:

\[
gcd(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_n^{\min(a_n, b_n)}
\]

- Greatest multiple of \(p_1 \) in both \(a \) and \(b \)
- Greatest multiple of \(p_2 \) in both \(a \) and \(b \)

Example: Compute \(\gcd(120, 500) \)
- \(120 = 2^3 \times 3 \times 5 \)
- \(500 = 2^2 \times 5^3 \)
- So \(\gcd(120, 500) = 2^2 \times 3^0 \times 5 = 20 \)

Least common multiples

Definition: The least common multiple of the integers \(a \) and \(b \) is the smallest positive integer that is divisible by both \(a \) and \(b \). The least common multiple of \(a \) and \(b \) is denoted \(\text{lcm}(a, b) \).

Example: What is \(\text{lcm}(3, 12) \)?
- Multiples of 3: 3, 6, 9, 12, 15, ...
- Multiples of 12: 12, 24, 36, ...
- So \(\text{lcm}(3, 12) = 12 \)

Note: \(\text{lcm}(a, b) \) is guaranteed to exist, since a common multiple exists (i.e., \(ab \)).
We can leverage the fundamental theorem of arithmetic to develop a better algorithm

Let: \(a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n} \) and \(b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n} \)

Then:

\[
\text{lcm}(a, b) = p_1^{\max(a_1, b_1)} p_2^{\max(a_2, b_2)} \cdots p_n^{\max(a_n, b_n)}
\]

Example: Compute \(\text{lcm}(120, 500) \)

- \(120 = 2^3 \times 3 \times 5 \)
- \(500 = 2^2 \times 5^3 \)
- So \(\text{lcm}(120, 500) = 2^3 \times 3 \times 5^3 = 3000 \) \(<\) \(120 \times 500 = 60,000 \)

LCMs are closely tied to GCDs

Note: \(ab = \text{lcm}(a, b) \times \text{gcd}(a, b) \)

Example: \(a = 120 = 2^3 \times 3 \times 5, b = 500 = 2^2 \times 5^3 \)

- \(120 = 2^3 \times 3 \times 5 \)
- \(900 = 2^2 \times 5^3 \)
- \(\text{lcm}(120, 500) = 2^3 \times 3 \times 5^3 = 3000 \)
- \(\text{gcd}(120, 500) = 2^2 \times 3^0 \times 5 = 20 \)
- \(\text{lcm}(120, 500) \times \text{gcd}(120, 500) = 3000 \times 20 = 60,000 \) ✔
Final Thoughts

- Prime numbers play an important role in number theory
- There are an infinite number of prime numbers
- Any number can be represented as a product of prime numbers; this has implications when computing GCDs and LCMs