Homework 5

- Minimum Value 63.00
- Maximum Value 100.00
- Average 88.88

- 90 - 100 22
- 80 - 89 10
- 70 - 79 6
- 60 - 69 2
- Null 7

Today’s Topics

Integers and division
- The division algorithm
- Modular arithmetic
- Applications of modular arithmetic
What is number theory?

Number theory is the branch of mathematics that explores the integers and their properties.

Number theory has many applications within computer science, including:
- Organizing data
- Encrypting sensitive data
- Developing error correcting codes
- Generating “random” numbers
- ...

We will only scratch the surface...

The notion of divisibility is one of the most basic properties of the integers

Definition: If a and b are integers and $a \neq 0$, we say that a divides b if there is an integer c such that $b = ac$. We write $a \mid b$ to say that a divides b, and $a \notmid b$ to say that a does not divide b.

Mathematically: $a \mid b \iff \exists c \in \mathbb{Z} (b = ac)$

Note: If $a \mid b$, then
- a is called a factor of b
- b is called a multiple of a

We’ve been using the notion of divisibility all along!
- $E = \{x \mid x = 2k \land k \in \mathbb{Z}\}$
Division examples

Examples:
- Does 4 | 16?
- Does 3 | 11?
- Does 7 | 42?

Question: Let n and d be two positive integers. How many positive integers not exceeding n are divisible by d?

Answer: We want to count the number of integers of the form dk that are less than n. That is, we want to know the number of integers k with $0 \leq dk \leq n$, or $0 \leq k \leq n/d$. Therefore, there are $\left\lfloor \frac{n}{d} \right\rfloor$ positive integers not exceeding n that are divisible by d.

Important properties of divisibility

Property 1: If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$

Proof: If $a \mid b$ and $a \mid c$, then there exist integers j and k such that $b = aj$ and $c = ak$. Hence, $b + c = aj + ak = a(j + k)$. Thus, $a \mid (b + c)$.

Property 2: If $a \mid b$, then $a \mid bc$ for all integers c.

Proof: If $a \mid b$, then this is some integer j such that $b = aj$. Multiplying both sides by c gives us $bc = ajc$, so by definition, $a \mid bc$.
One more property

Property 3: If \(a \mid b \) and \(b \mid c \), then \(a \mid c \).

Proof: If \(a \mid b \) and \(b \mid c \), then there exist integers \(j \) and \(k \) such that \(b = aj \) and \(c = bk \). By substitution, we have that \(c = ajk \), so \(a \mid c \).

Division algorithm

Theorem: Let \(a \) be an integer and let \(d \) be a positive integer. There are unique integers \(q \) and \(r \), with \(0 \leq r < d \), such that \(a = dq + r \).

For historical reasons, the above theorem is called the **division algorithm**, even though it isn’t an algorithm!

Terminology: Given \(a = dq + r \)
- \(d \) is called the **divisor**
- \(q \) is called the **quotient**
- \(r \) is called the **remainder**
- \(q = a \ \text{div} \ d \)
- \(r = a \ \text{mod} \ d \)
Examples

Question: What are the quotient and remainder when 123 is divided by 23?

Answer: We have that $123 = 23 \times 5 + 8$. So the quotient is $123 \div 23 = 5$, and the remainder is $123 \mod 23 = 8$.

Question: What are the quotient and remainder when -11 is divided by 3?

Answer: Since $-11 = 3 \times -4 + 1$, we have that the quotient is -11 and the remainder is 1.

Recall that since the remainder must be positive, $3 \times -3 - 2$ is not a valid use of the division theorem!

Many programming languages use the **div** and **mod** operations

For example, in Java, C, and C++

- `/` corresponds to `div` when used on integer arguments
- `%` corresponds to `mod`

```java
public static void main(String[] args) {
    int x = 2;
    int y = 5;
    float z = 2.0;

    System.out.println(y/x);
    System.out.println(y%x);
    System.out.println(y/z);
}
```

This can be a source of many errors, so be careful in your future classes!
Group work!

Problem 1: Does
1. $12 \mid 144$
2. $4 \mid 67$
3. $9 \mid 81$

Problem 2: What are the quotient and remainder when
1. 64 is divided by 8
2. 42 is divided by 11
3. 23 is divided by 7

Sometimes, we care only about the remainder of an integer after it is divided by some other integer

Example: What time will it be 22 hours from now?

Answer: If it is 6am now, it will be $(6 + 22) \mod 24 = 28 \mod 24 = 4$ am in 22 hours.
Since remainders can be so important, they have their own special notation!

Definition: If a and b are integers and m is a positive integer, we say that a is congruent to b modulo m if $m \mid (a - b)$. We write this as $a \equiv b \mod m$.

Note: $a \equiv b \mod m$ iff $a \mod m = b \mod m$.

Examples:
- Is 17 congruent to 5 modulo 6?
- Is 24 congruent to 14 modulo 6?

Properties of congruencies

Theorem: Let m be a positive integer. The integers a and b are congruent modulo m iff there is an integer k such that $a = b + km$.

Theorem: Let m be a positive integer. If $a \equiv b \mod m$ and $c \equiv d \mod m$, then
- $(a + c) \equiv (b + d) \mod m$
- $ac \equiv bd \mod m$
Congruencies have many applications within computer science

Today we’ll look at two of the book’s three:

1. Hash functions
2. Cryptography

Hash functions allow us to quickly and efficiently locate data

Problem: Given a large collection of records, how can we find the one we want quickly?

Solution: Apply a hash function that determines the storage location of the record based on the record’s ID. A common hash function is \(h(k) = k \mod n \), where \(n \) is the number of available storage locations.

<table>
<thead>
<tr>
<th>Memory:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID: 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID: 276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID: 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(42 \mod 8 = 2 \), \(276 \mod 8 = 4 \), \(23 \mod 8 = 7 \)
Hash functions are not one-to-one, so we must expect occasional collisions

Solution 1: Use next available location

<table>
<thead>
<tr>
<th>Memory:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID: 42</td>
<td>...</td>
<td>...</td>
<td>2</td>
<td>10</td>
<td>...</td>
<td>...</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

42 mod 8 = 2
10 mod 8 = 2

The field of cryptography makes heavy use of number theory and congruencies

Cryptography is the study of secret messages

Uses of cryptography:
- Protecting medical records
- Storing and transmitting military secrets
- Secure web browsing
- ...

Congruencies are used in cryptosystems from antiquity, as well as in modern-day algorithms

Since modern algorithms require quite a bit of sophistication to discuss, we’ll examine an ancient cryptosystem
The Caesar cipher is based on congruencies

To encode a message using the Caesar cipher:
- Choose a shift index s
- Convert each letter A-Z into a number 0-25
- Compute $f(p) = p + s \mod 26$

Example: Let $s = 9$. Encode “ATTACK”.
- ATTACK = 0 19 19 0 2 10
- $f(0) = 9$, $f(19) = 2$, $f(2) = 11$, $f(10) = 19$
- Encrypted message: 9 2 2 9 11 19 = JCCJLT

Decryption involves using the inverse function

That is, $f^{-1}(p) = p - s \mod 26$

Example: Assume that $s = 3$. Decrypt the message “UHWUHDW”.
- UHWUHDW = 20 7 22 20 7 3 22
- $f^{-1}(20) = 17$, $f^{-1}(7) = 4$, $f^{-1}(22) = 19$, $f^{-1}(3) = 0$
- Decrypted result: 17 4 19 17 4 0 19 = RETREAT
Group work!

Problem 1:
1. Is 4 congruent to 8 mod 3?
2. Is 45 congruent to 12 mod 9?
3. Is 21 congruent to 28 mod 7?

Problem 2: The message “ROVYY” was encrypted with the Caesar cipher using $s = 10$. Decrypt it.

Final thoughts

- Number theory is the study of integers and their properties
- Divisibility, modular arithmetic, and congruency are used throughout computer science
- Next time:
 - Prime numbers, GCDs, integer representation (Section 3.5)