Problem from Section 4.1

18. a) Plugging in \(n = 2 \), we see that \(P(2) \) is the statement \(2! < 2^2 \).

b) Since \(2! = 2 \), this is the true statement \(2 < 4 \).

c) The inductive hypothesis is the statement that \(k! < k^k \).

d) For the inductive step, we want to show for each \(k \geq 2 \) that \(P(k) \) implies \(P(k+1) \). In other words, we want to show that assuming the inductive hypothesis (see part (c)) we can prove that \((k+1)! < (k+1)^{k+1} \).

e) \((k+1)! = (k+1)k! < (k+1)k^k < (k+1)(k+1)^k = (k+1)^{k+1} \).

f) We have completed both the basis step and the inductive step, so by the principle of mathematical induction, the statement is true for every positive integer \(n \) greater than 1.

32. The statement is true for the base case, \(n = 1 \), since \(3 \mid 3 \). Suppose that \(3 \mid (k^3 + 2k) \). We must show that \(3 \mid ((k + 1)^3 + 2(k + 1)) \). If we expand the expression in question, we obtain \(k^3 + 3k^2 + 3k + 1 + 2k + 2 = (k^3 + 2k) + 3(k^2 + k + 1) \). By the inductive hypothesis, 3 divides \(k^3 + 2k \), and certainly 3 divides \(3(k^2 + k + 1) \), so 3 divides their sum, and we are done.