Exam II
(closed book)
CS 441
Spring 2005, Dr. Litman

1. Check the pages, there should be 5 (multi-part) questions.

2. Please remember to put your name below.

3. Put your initials on the bottom of each page.

4. Pace yourself!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Max</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. **Functions**

(a) Let \(f(n) = 2n + 1 \). Answer the following questions AND explain your reasons behind the answers.

- Is \(f \) a one-to-one function from the set of integers to the set of integers?

- Is \(f \) an onto function from the set of integers to the set of integers?

- Is \(f \) a bijection?

- What are the domain, codomain, and range of \(f \)?
(b) Suppose \(g : A \to B \) and \(f : B \to C \) where \(A = B = C = \{1,2,3,4\} \), and
\[g = \{(1,4),(2,1),(3,1),(4,2)\}, \text{ and } f = \{(1,3),(2,2),(3,4),(4,2)\} \]

- Find \(f \circ g \)

- Find \(g \circ f \)

- Find \(g \circ g \)

- Find \(g \circ (g \circ g) \)
2. Sequences and Summations

(a) Find the formulas that generate each of the following sequences a_1, a_2, a_3, \ldots

- 5, 9, 13, 17, 21, \ldots

- 1, 1/3, 1/5, 1/7, 1/9, \ldots

(b) Find the sum that generates each of:

- $\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \ldots$

- $2 + 4 + 8 + 16 + 32 + \ldots + 2^{28}$
(c) Find the values of:

\[\sum_{j=2}^{8} 3 \]

and

\[\sum_{j=0}^{4} (2j + 1) \]

(d) What are the values of the terms \(a_1, a_3\) and \(a_5\) of the sequence \(a_n\), where

- \(a_n = n^2 + n\)

- \(a_n = 2\)
3. **Mathematical Induction**

(a) Suppose you wish to prove that the following is true for all positive integers \(n \) by using the Principle of Mathematical Induction:

\[
1 + 3 + 5 + \ldots + (2n - 1) = n^2.
\]

- Write \(P(1) \)
- Write \(P(72) \)
- Write \(P(73) \)
- Use \(P(72) \) to prove \(P(73) \)
- Write \(P(k) \)
- Write \(P(k+1) \)
- Use Induction to prove that \(P(n) \) is true for all positive integers \(n \).
4. Recursion

(a) Find \(f(2) \) and \(f(3) \) if \(f(n) = \frac{f(n-1)}{f(n-2)} \), \(f(0) = 2 \), \(f(1) = 5 \)

(b) Suppose that \(\{a_n\} \) is defined recursively by \(a_n = a_{n-1}^2 - 1 \) and that \(a_0 = 2 \). Find \(a_2 \) and \(a_3 \).

(c) Write a recursive definition for the function \(f(n) = an \) (using addition), where \(n \) is a positive integer and \(a \) is a real number.

(d) Give a recursive definition (with initial condition(s)) of \(\{a_n\} \) (where \(n = 1, 2, 3, \ldots \) for \(\{a_n\} = 2^n \).
5. Miscellaneous

(a) What is wrong with the following proof that every positive integer equals the next larger positive integer?

“Proof.” Let \(P(n) \) be the proposition that \(n=n+1 \). Assume that \(P(k) \) is true, so that \(k=k+1 \). Add 1 to both sides of this equation to obtain \(k+1=k+2 \). Since this is the statement \(P(k+1) \), it follows that \(P(n) \) is true for all positive integers \(n \).

(b) Does the following rule for \(g \) describe a function: \(g: \mathbb{N} \to \mathbb{N} \) where \(g(n) = \text{any integer} > n \). State yes or no, and explain.

(c) Suppose \(f: \mathbb{R} \to \mathbb{R} \) and \(g: \mathbb{R} \to \mathbb{R} \) where \(g(x)=2x+1 \) and \(g \circ f(x) = 2x+11 \). Find the rule for \(f \).
(d) Find the value of:

\[\sum_{k=1}^{2} \sum_{j=0}^{1} (2j + 2k) \]

(e) Suppose that \(f \) is the function from the set \(\{a,b,c,d\} \) to itself with \(f(a)=d, f(b)=a, f(c)=b, f(d)=c \). Find the inverse of \(f \).