Computational Discourse

Speech and Language Processing

Chapter 21

• Bat#1: Bats are the only mammals that fly.
• Bat#2: He was at bat when it happened.
• Bat#4: A cricket bat has a narrow handle and a broad flat end for hitting.
• Bat#5: The impact between bat and ball is an extremely violent one in which the bat imparts a huge force.

• For each sense pair, are they unrelated, distantly related, closely related, or same sense?
Terminology

- **Discourse**: anything longer than a single utterance or sentence
 - Monologue
 - Dialogue:
 - May be multi-party
 - May be human-machine

Is this text coherent?

“Consider, for example, the difference between passages (18.71) and (18.72). Almost certainly not. The reason is that these utterances, when juxtaposed, will not exhibit coherence. Do you have a discourse? Assume that you have collected an arbitrary set of well-formed and independently interpretable utterances, for instance, by randomly selecting one sentence from each of the previous chapters of this book.”
Or, this?

“Assume that you have collected an arbitrary set of well-formed and independently interpretable utterances, for instance, by randomly selecting one sentence from each of the previous chapters of this book. Do you have a discourse? Almost certainly not. The reason is that these utterances, when juxtaposed, will not exhibit coherence. Consider, for example, the difference between passages (18.71) and (18.72).”

What makes a text coherent?

• Discourse structure
 – In a coherent text the parts of the discourse exhibit a sensible ordering and hierarchical relationship

• Rhetorical structure
 – The elements in a coherent text are related via meaningful relations (“coherence relations”)

• Entity structure (“Focus”)
 – A coherent text is about some entity or entities, and the entity/entities is/are referred to in a structured way throughout the text.
Outline

• Discourse Structure
 – TextTiling (unsupervised)
 – Supervised approaches
• Coherence
 – Hobbs coherence relations
 – Rhetorical Structure Theory
 – Entity Structure
• Pronouns and Reference Resolution

Conventions of Discourse Structure

• Differ for different genres
 – Academic articles:
 • Abstract, Introduction, Methodology, Results, Conclusion
 – Newspaper stories:
 • Inverted Pyramid structure:
 – Lead followed by expansion, least important last
 – Textbook chapters
 – News broadcasts
 – NB: We can take advantage of this to ‘parse’ discourse structures
Discourse Segmentation

- Simpler task: Separating document into *linear sequence of subtopics*
- Applications
 - Information retrieval
 - Automatically segmenting a TV news broadcast or a long news story into sequence of stories
 - Audio browsing (e.g. of voicemail)
 - Text summarization
 - Information extraction
 - Extract information from a coherent segment or topic
 - Question Answering

Unsupervised Segmentation

- Hearst (1997): 21-paragraph science news article on “Stargazers”
- Goal: produce the following subtopic segments:

 1-3 Intro - the search for life in space
 4-5 The moon’s chemical composition
 6-8 How early earth-moon proximity shaped the moon
 9-12 How the moon helped life evolve on earth
 13 Improbability of the earth-moon system
 14-16 Binary/trinary star systems make life unlikely
 17-18 The low probability of nonbinary/trinary systems
 19-20 Properties of earth’s sun that facilitate life
 21 Summary
Intuition: Cohesion

• Halliday and Hasan (1976): “The use of certain linguistic devices to link or tie together textual units”

• Lexical cohesion:
 – Indicated by relations between words in the two units (identical word, synonym, hypernym)
 • Before winter I built a chimney, and shingled the sides of my house. I thus have a tight shingled and plastered house.
 • Peel, core and slice the pears and the apples. Add the fruit to the skillet.

Intuition: Cohesion

• Non-lexical: anaphora
 – The Woodhouses were first in consequence there. All looked up to them.

• Cohesion chain:
 – Peel, core and slice the pears and the apples. Add the fruit to the skillet. When they are soft…

• Note: cohesion is not coherence
Cohesion-Based Segmentation

- Sentences or paragraphs in a subtopic are cohesive with each other
- But not with paragraphs in a neighboring subtopic
- So, if we measured the cohesion between every neighboring sentences
 - We might expect a ‘dip’ in cohesion at subtopic boundaries.
TextTiling (Hearst ’97)

1. Tokenization
 - Each space-delimited word
 - Converted to lower case
 - Throw out stop list words
 - Stem the rest
 - Group into pseudo-sentences (windows) of length w=20

2. Lexical Score Determination: cohesion score
 Three part score including
 - Average similarity (cosine measure) between gaps
 - Introduction of new terms
 - Lexical chains

3. Boundary Identification

TextTiling Method

![Diagram showing text tiling method with labeled segments and markers.](image-url)
Cosine Similarity

\[
\text{sim}_{\text{cosine}}(\vec{b}, \vec{a}) = \frac{\vec{b} \cdot \vec{a}}{|\vec{b}| |\vec{a}|} = \frac{\sum_{i=1}^{N} b_i \times a_i}{\sqrt{\sum_{i=1}^{N} b_i^2} \sqrt{\sum_{i=1}^{N} a_i^2}}
\]

Vector Space Model
(recall distributional semantics)

- In the vector space model for TextTiling, both segments are represented as vectors
- Numbers are derived from the words that occur in the collection
 - Could count bits to get similarity, frequency, weights etc.
- But that favors long documents over shorter ones
 - Cosine to normalize dot product by vector lengths
Lexical Score Part 2: Introduction of New Terms

(b)

Lexical Score Part 3: Lexical Chains

(c)
Supervised Discourse segmentation

- Lexical features as before
- Discourse markers or cue words

 - Broadcast news
 - Good evening, I’m <PERSON>
 - …coming up….

 - Science articles
 - “First,…”
 - “The next topic….”
Supervised discourse segmentation

• Supervised machine learning

 – Label segment boundaries in training and test set
 • Easy to get automatically for very clear boundaries
 (paragraphs, news stories)

 – Extract features in training

 – Learn a (sequence) classifier

 – In testing, apply features to predict boundaries

Supervised discourse segmentation

• Evaluation: WindowDiff (Pevzner and Hearst 2000)
 assign partial credit
Local Work

- Representation and application of hierarchical discourse segmentation
- Measuring and applying lexical cohesion (Ward & Litman, 2008)
- Cue phrase disambiguation (Hirschberg & Litman, 1993; Litman, 1996)
- Supervised linear discourse segmentation (Passonneau & Litman, 1997)
- Swapna Somasundaran, Computer Science, PhD 2010: Discourse-level relations for Opinion Analysis (Wiebe)

- Your name here!

Part II of: What makes a text coherent?

- Appropriate sequencing of subparts of the discourse - discourse/topic structure

 - Appropriate use of coherence relations between subparts of the discourse -- rhetorical structure

- Appropriate use of referring expressions
Text Coherence, again

The reason is that these utterances, when juxtaposed, will not exhibit coherence. Almost certainly not. Do you have a discourse? Assume that you have collected an arbitrary set of well-formed and independently interpretable utterances, for instance, by randomly selecting one sentence from each of the previous chapters of this book.

Or.…

Assume that you have collected an arbitrary set of well-formed and independently interpretable utterances, for instance, by randomly selecting one sentence from each of the previous chapters of this book. Do you have a discourse? Almost certainly not. The reason is that these utterances, when juxtaposed, will not exhibit coherence.
Coherence

- John hid Bill’s car keys. He was drunk.
- ??John hid Bill’s car keys. He likes spinach.
- Again, not the same as cohesion.

Why Coherence? Summarization

Summary A
Britain said he did not have diplomatic immunity. The Spanish authorities contend that Pinochet may have committed crimes against Spanish citizens in Chile. Baltasar Garzon filed a request on Wednesday. Chile said, President Fidel Castro said Sunday he disagreed with the arrest in London.

Summary B
Former Chilean dictator Augusto Pinochet, was arrested in London on 14 October 1998. Pinochet, 82, was recovering from surgery. The arrest was in response to an extradition warrant served by a Spanish judge. Pinochet was charged with murdering thousands, including many Spaniards. Pinochet is awaiting a hearing, his fate in the balance. American scholars applauded the arrest.

Slide from Mirella Lapata and Regina Barzilay
Applications of Coherence Metrics

- **Text Generation**:
 - concept-to-text generation
 - summarization, text simplification
 - question answering, machine translation
 - essay grading
- **Text Understanding**
 - Improving coreference resolution
- **Potential uses**
 - automatic evaluation tool for text quality
 - during system development (avoids repeated human evaluations)
- **Software**
 - Brown Coherence Toolkit
 - Coh-Metrix: cohmetrix.memphis.edu/CohMetrixDemo/demo.htm

Hobbs ’79: Coherence Relations

- **Result**
 - Infer that the state or event asserted by S0 causes or could cause the state or event asserted by S1.

 The Tin Woodman was caught in the rain. His joints rusted.
• **Explanation**
 – Infer that the state or event asserted by S1 causes or could cause the state or event asserted by S0.

 John hid Bill’s car keys. He was drunk.

• **Parallel**
 – Infer $p(a_1, a_2..)$ from the assertion of S0 and $p(b_1, b_2…)$ from the assertion of S1, where a_i and b_i are similar, for all i.

 The Scarecrow wanted some brains. The Tin Woodman wanted a heart.
• Elaboration
 – Infer the same proposition P from the assertions of S0 and S1.

 Dorothy was from Kansas. She lived in the midst of the great Kansas prairies.

Coherence Relations

John went to the bank to deposit his paycheck. (S1)
He then took a train to Bill’s car dealership. (S2)
He needed to buy a car. (S3)
The company he works for now isn’t near any public transportation. (S4)
He also wanted to talk to Bill about their softball league. (S5)
Rhetorical Structure Theory

- Another theory of discourse structure, based on identifying relations between segments of the text
 - Nucleus/satellite notion encodes asymmetry
 - Nucleus is thing that if you deleted it, text wouldn’t make sense.
 - Some rhetorical relations:
 - Elaboration: (set/member, class-instance, whole/part…)
 - Contrast: multinuclear
 - Condition: Sat presents precondition for N
 - Purpose: Sat presents goal of the activity in N

One Rhetorical Relation

- A sample definition
 - Relation: Evidence
 - Constraints on N: H might not believe N as much as S thinks s/he should
 - Constraints on Sat: H already believes or will believe Sat
 - Effect: H’s belief in N is increased
- An example:
 Kevin must be here.
 His car is parked outside.
Some Problems with RST

- How many Rhetorical Relations are there?
- How can we use RST in dialogue as well as monologue?
- RST does not model overall structure of the discourse.
- Difficult to get annotators to agree on labeling the same texts
- Trees versus directed graphs?

Automatic Labeling / Discourse Parsing

- Supervised machine learning
 - Get a group of annotators to assign a set of relations to a text, and/or tree structure
 - Extract a set of surface features from the text that might signal the presence of the coherence relations
 - Train a supervised ML system based on the training set
 - Some publicly available resources (RST treebank, Penn Discourse Treebank) exist
- Semi and unsupervised approaches
- Inferential / Abduction (my dissertation!)
Penn Discourse Treebank

- *The city’s Campaign Finance Board has refused to pay Mr. Dinkins $95,142 in matching funds because his campaign records are incomplete.*
 – Causal relation
- *So much of the stuff poured into Motorola’s offices that its mail rooms there simply stopped delivering it. Implicit = so. Now, thousands of mailers, catalogs and sales pitches go straight into the trash.*
 - Consequence relation

Shallow Features

- Explicit markers / cue phrases: *because, however, therefore, then, etc.*
- Tendency of certain syntactic structures to signal certain relations:
 – Infinitives are often used to signal purpose relations: *Use rm to delete files.*
- Ordering
- Tense/aspect
- Intonation
Part III of: What makes a text coherent?
Entity-based Coherence

• Appropriate sequencing of subparts of the discourse -- discourse/topic structure

• Appropriate use of coherence relations between subparts of the discourse -- rhetorical structure

• **Appropriate use of referring expressions**

Centering Theory:
Grosz, Joshi and Weinstein, 1995

• The way entities are introduced and discussed influences coherence
• **Entities in an utterance** are ranked according to salience.
 – Is an entity pronominalized or not?
 – Is an entity in a prominent syntactic position?
• Each utterance has one **center** (=topic or focus).
 – Coherent discourses have utterances with common centers.
• Entity transitions capture degrees of coherence
 – (e.g., in Centering theory CONTINUE > SHIFT).
Claim: Entity coherence:
Discourses without a clear ‘central entity’ feel less coherent

John went to his favorite music store to buy a piano.
He had frequented the store for many years.
He was excited that he could finally buy a piano.
He arrived just as the store was closing for the day.

John went to his favorite music store to buy a piano.
It was a store John had frequented for many years.
He was excited that he could finally buy a piano.
It was closing just as John arrived.

Claim: Entity coherence:
Discourses without a clear ‘central entity’ feel less coherent

John went to his favorite music store to buy a piano.
He had frequented the store for many years.
He was excited that he could finally buy a piano.
He arrived just as the store was closing for the day.

John went to his favorite music store to buy a piano.
It was a store John had frequented for many years.
He was excited that he could finally buy a piano.
It was closing just as John arrived.
Concepts and definitions, I

- Every UTTERANCE U in a discourse (segment) DS updates the LOCAL FOCUS - a PARTIALLY RANKED set of discourse entities, or FORWARD-LOOKING CENTERS (CFs).
- An utterance U in discourse segment DS updates the existing CF set by replacing it with the set of CFs REALIZED in U, $CF(U, DS)$ (usually simplified to $CF(U)$).
- The most highly ranked CF realized in utterance U is $CP(U)$.

\[
\begin{array}{l}
(1) \quad u_1. \text{Susan gave James a pet hamster.} \\
\text{CF}(u_1) = \{\text{Susan, James, pet hamster}\}. \text{CP}(u_1) = \text{Susan} \\
(2) \quad u_2. \text{She gave Peter a nice scarf.} \\
\text{CF}(u_2) = \{\text{Susan, Peter, nice scarf}\}. \text{CP}(u_2) = \text{Susan}
\end{array}
\]

Concepts and Definitions, II: The CB

- The BACKWARD-LOOKING CENTER of utterance U_i, $CB(U_i)$, is the highest-ranked element of $CF(U_{i-1})$ that is realized in U_i.
The CB: Examples

(1) u1. Susan gave James a pet hamster.
 CF(u1) = [Susan, James, pet hamster]. CB = undefined CP=Susan

(2) u2. She gave Peter a nice scarf.
 CF(u2) = [Susan, Peter, nice scarf]. CB=Susan. CP=Susan

NB: The CB is not always the most ranked entity of the PREVIOUS utterance

(2') u2. He loves hamsters.
 CF(u2) = [James, hamsters]. CB=James. CP=James

… or the most highly ranked entity of the CURRENT one

(2'') u2. Peter gave her a nice scarf.
 CF(u2) = [Peter, Susan, nice scarf]. CB=Susan. CP=Peter

Constraint 1

CONSTRAINT 1 (STRONG): All utterances of a segment except for the first have exactly one CB

CB UNIQUENESS: Utterances have at most one CB

ENTITY CONTINUITY: For all utterances of a segment except for the first, \(CF(U_i) \cap CF(U_{i+1}) \neq \emptyset \)

CONSTRAINT 1 (WEAK): All utterances of a segment except for the first have AT MOST ONE CB
Claims of the theory: Local salience and pronominalization

• Grosz et al (1995): the CB is also the most salient entity. Texts in which other entities (but not the CB) are pronominalized are less felicitous

<table>
<thead>
<tr>
<th>Rule 1</th>
</tr>
</thead>
</table>

| Rule 1: if any CF is pronominalized, the CB is. |
Claims of the theory: Preserving the ranking

• Discourses without a clear ‘central entity’ feel less coherent

(1) a. John went to his favorite music store to buy a piano.
 b. He had frequented the store for many years.
 c. He was excited that he could finally buy a piano.
 d. He arrived just as the store was closing for the day.

(2) a. John went to his favorite music store to buy a piano.
 b. It was a store John had frequented for many years.
 c. He was excited that he could finally buy a piano.
 d. It was closing just as John arrived.

Transitions

• Grosz et al.: utterances are easier to process
 – if they preserve CB of previous utterance or
 – if CB(U) is also CP(U).

CONTINUE: U_i is a continuation if $\text{CB}(U_i) = \text{CB}(U_{i-1})$, and $\text{CB}(U_i) = \text{CP}(U_i)$

RETAIN: U_i is a retain if $\text{CB}(U_i) = \text{CB}(U_{i-1})$, but $\text{CB}(U_i)$ is different from $\text{CP}(U_i)$

SHIFT: U_i is a shift if $\text{CB}(U_i) \neq \text{CB}(U_{i-1})$
Utterance classification

(0) u0. Susan is a generous person.
 \[\text{CF}(u0) = [\text{Susan}] \text{ CB = undefined CP = Susan.}\]

(1) u1. She gave James a pet hamster.
 \[\text{CF}(u1) = [\text{Susan,James,pet hamster}] \text{ CB = Susan } \text{ CP=Susan}\]

CONTINUE:

(2) u2. She gave Peter a nice scarf.
 \[\text{CF}(u2) = [\text{Susan,Peter,nice scarf}] \text{ CB=Susan. } \text{ CP=Susan CONTINUE}\]

Utterance classification, II

(0) u0. Susan is a generous person.
 \[\text{CF}(u0) = [\text{Susan}] \text{ CB = undefined CP = Susan.}\]

(1) u1. She gave James a pet hamster.
 \[\text{CF}(u1) = [\text{Susan,James,pet hamster}] \text{ CB = Susan } \text{ CP=Susan}\]

SHIFT:

(2') u2. He loves hamsters.
 \[\text{CF}(u2) = [\text{James}] \text{ CB=James. CP=James SHIFT}\]
Utterance classification, III

(0) u0. Susan is a generous person.
 CF(u0) = [Susan] CB = undefined CP = Susan.

(1) u1. She gave James a pet hamster.
 CF(u1) = [Susan, James, pet hamster]. CB = Susan
 CP = Susan RETAIN

RETAIN:

(2'') u2. Peter gave her a nice scarf.
 CF(u2) = [Peter, Susan, nice scarf]. CB = Susan.
 CP = Peter RETAIN

Rule 2

RULE 2: (Sequences of) continuations are preferred over (sequences of) retains, which are preferred over (sequences of) shifts.
Summary of the claims

CONSTRAINT 1: All utterances of a segment except for the first have exactly one CB

RULE 1: if any CF is pronominalized, the CB is.

RULE 2: (Sequences of) continuations are preferred over (sequences of) retains, which are preferred over (sequences of) shifts.

Original centering theory

• Grosz et al do not provide algorithms for computing any of the notions used in the basic definitions:
 – UTTERANCE (clause? finite clause? sentence?)
 – PREVIOUS UTTERANCE
 – REALIZATION
 – RANKING
 – What counts as a ‘PRONOUN’ for the purposes of Rule 1? (Only personal pronouns? Or demonstrative pronouns as well? What about second person pronouns?)

• One of the reasons for the success of the theory is that it provides plenty of scope for theorizing …
Former Chilean dictator Augusto Pinochet, was arrested in London on 14 October 1998. Pinochet, 82, was recovering from surgery. The arrest was in response to an extradition warrant served by a Spanish judge. Pinochet was charged with murdering thousands, including many Spaniards. He is awaiting a hearing, his fate in the balance. American scholars applauded the arrest.
Barzilay and Lapata: The Entity Grid

1. Former Chilean dictator Augusto Pinochet was arrested in London on 14 October 1998.
2. Pinochet, 82, was recovering from surgery.
3. The arrest was in response to an extradition warrant served by a Spanish judge.
4. Pinochet was charged with murdering thousands, including many Spaniards.
5. Pinochet is awaiting a hearing on his fate in the balance.
6. American scholars applauded the arrest.
Barzilay and Lapata: The Entity Grid

<table>
<thead>
<tr>
<th>Precedent</th>
<th>London</th>
<th>Court</th>
<th>Surgery</th>
<th>Arrest</th>
<th>Warrant</th>
<th>Judge</th>
<th>Thousands</th>
<th>Hearing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Barzilay and Lapata: The Entity Grid

<table>
<thead>
<tr>
<th>Precedent</th>
<th>London</th>
<th>Court</th>
<th>Surgery</th>
<th>Arrest</th>
<th>Warrant</th>
<th>Judge</th>
<th>Thousands</th>
<th>Hearing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Barzilay and Lapata: The Entity Grid

[Diagram]

Barzilay and Lapata: The Entity Grid

[Diagram]
Barzilay and Lapata: The Entity Grid

\[
\begin{array}{cccccccccccc}
\end{array}
\]

Barzilay and Lapata: The Entity Grid

Definition

A local entity transition is sequence \{S, O, X, \}^n that represents entity occurrences and their syntactic roles in n adjacent sentences.

Example (transitions of length 2)

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>O</th>
<th>X</th>
<th>S</th>
<th>O</th>
<th>X</th>
<th>S</th>
<th>O</th>
<th>X</th>
<th>S</th>
<th>O</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.02</td>
<td>.07</td>
<td>0</td>
<td>0</td>
<td>.12</td>
</tr>
<tr>
<td>(d_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.02</td>
<td>0</td>
<td>.07</td>
<td>0</td>
<td>.02</td>
<td>0</td>
<td>0</td>
<td>.06</td>
<td>.04</td>
</tr>
<tr>
<td>(d_3)</td>
<td>0</td>
<td>.02</td>
<td>0</td>
<td>0</td>
<td>.03</td>
<td>0</td>
<td>0</td>
<td>.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.05</td>
</tr>
</tbody>
</table>

35
Final topic: Pronouns and Reference Resolution

A Reference Joke

Gracie: Oh yeah ... and then Mr. and Mrs. Jones were having matrimonial trouble, and my brother was hired to watch Mrs. Jones.

George: Well, I imagine she was a very attractive woman.

Gracie: She was, and my brother watched her day and night for six months.

George: Well, what happened?

Gracie: She finally got a divorce.

George: Mrs. Jones?

Gracie: No, my brother's wife.
Reference Resolution: Vocabulary

- Process of associating Bloomberg/he/his with particular person and big budget problem/it with a concept
 - **Guiliani** left **Bloomberg** to be mayor of a city with a **big budget problem**. *It’s unclear how he’ll be able to handle it during his term.*
- Referring exprs.: Guilani, Bloomberg, he, it, his
- Presentational it, there: non-referential
- Referents: the person named Bloomberg, the concept of a big budget problem

- Co-referring referring expressions: Bloomberg, he, his
- Antecedent: Bloomberg
- Anaphors: he, his
Discourse Models

- Needed to model reference because referring expressions (e.g. Giuliani, Bloomberg, he, it, budget problem) encode information about beliefs about the referent
- When a referent is first mentioned in a discourse, a representation is evoked in the model
 - Information predicated of it is stored also in the model
 - On subsequent mention, it is accessed from the model

Types of Referring Expressions

- Entities, concepts, places, propositions, events, ...

 According to John, Bob bought Sue an Integra, and Sue bought Fred a Legend.
 - But that turned out to be a lie. (a speech act)
 - But that was false. (proposition)
 - That struck me as a funny way to describe the situation. (manner of description)
 - That caused Sue to become rather poor. (event)
 - That caused them both to become rather poor. (combination of multiple events)
Reference Phenomena:
5 Types of Referring Expressions
- Indefinite NPs
 A homeless man hit up Bloomberg for a dollar.
 Some homeless guy hit up Bloomberg for a dollar.
 This homeless man hit up Bloomberg for a dollar.
- Definite NPs
 The poor fellow only got a lecture.
- Demonstratives
 This homeless man got a lecture but that one got carted off to jail.
- Names
 Prof. Litman teaches on Monday.

Pronouns

A large tiger escaped from the Central Park zoo chasing a tiny sparrow. It was recaptured by a brave policeman.
 – Referents of pronouns usually require some degree of salience in the discourse (as opposed to definite and indefinite NPs, e.g.)
 – How do items become salient in discourse?
Salience vs. Recency

E: So you have the engine assembly finished. Now attach the rope. By the way, did you buy the gas can today?
A: Yes.
E: Did it cost much?
A: No.
E: OK, good. Have you got it attached yet?

Reference Phenomena: Information Status

• Giveness hierarchy / accessibility scales …
• But complications
Inferables

- I almost bought an Acura Integra today, but a door had a dent and the engine seemed noisy.
- Mix the flour, butter, and water. Knead the dough until smooth and shiny.

Discontinuous Sets

- Entities evoked together but mentioned in different sentence or phrases

 John has a St. Bernard and Mary has a Yorkie. They arouse some comment when they walk them in the park.
Generics

I saw two Corgis and their seven puppies today. They are the funniest dogs

Constraints on Pronominal Reference

• Number agreement
 John’s parents like opera. John hates it/John hates them.
• Person agreement
 George and Edward brought bread. They shared it.
• Gender agreement
 John has a Porsche. He/it/she is attractive.

• Syntactic constraints
 John bought himself a new Volvo. (himself = John)
 John bought him a new Volvo (him = not John).

Preferences in Pronoun Interpretation

• Recency
 John bought a new boat. Bill bought a bigger one.
 Mary likes to sail it.

• But…grammatical role raises its ugly head…
 John went to the Acura dealership with Bill. He bought an Integra.
 Bill went to the Acura dealership with John. He bought an Integra.
 ?John and Bill went to the Acura dealership. He bought an Integra.
• And so does…repeated mention
 – John needed a car to go to his new job. He decided that he wanted something sporty. Bill went to the dealership with him. He bought a Miata.
 – Who bought the Miata?
 – What about grammatical role preference?
• Parallel constructions
 Saturday, Mary went with Sue to the farmer’s market.
 Sally went with her to the bookstore.
 Sunday, Mary went with Sue to the mall.
 Sally told her she should get over her shopping obsession.
• Selectional restriction
 John left his plane in the hangar.
 He had flown it from Memphis this morning

• Verb semantics/thematic roles
 John telephoned Bill. He’d lost the directions to his house.
 John criticized Bill. He’d lost the directions to his house.
Summary: What Affects Reference Resolution?

• Lexical factors
 – Reference type: Inferrability, discontinuous set, generics, one anaphora, pronouns,…
• Discourse factors:
 – Recency
 – Focus/topic structure, digression
 – Repeated mention
• Syntactic factors:
 – Agreement: gender, number, person, case
 – Parallel construction
 – Grammatical role

 – Selectional restrictions
• Semantic/lexical factors
 – Verb semantics, thematic role
Reference Resolution Algorithms

• Given these types of features, can we construct an algorithm that will apply them such that we can identify the correct referents of anaphors and other referring expressions?

Reference Resolution Task

• Finding in a text all the referring expressions that have one and the same denotation
 – Pronominal anaphora resolution
 – Anaphora resolution between named entities
 – Full noun phrase anaphora resolution
Issues

• Which constraints/features can/should we make use of?
• How should we order them? I.e. which override which?
• What should be stored in our discourse model? I.e., what types of information do we need to keep track of?
• How to evaluate?

Some Algorithms

• Hobbs ‘78: syntax tree-based referential search
• Centering: recall entity-coherence
• Supervised learning approaches
Hobbs: Syntax-Based Approach

- Search for antecedent in parse tree of current sentence, then prior sentences in order of recency
 - For current S, search for NP nodes to the left of a path p from the pronoun up to the first NP or S node (X) above it in L2R, breadth-first
 - Propose as pronoun’s antecedent any NP you find as long as it has an NP or S node between itself and X
 - If X is highest node in sentence, search prior sentences, L2R breadth-first, for candidate NPs
 - O.w., continue searching current tree by going to next S or NP above X before going to prior sentences

Supervised Anaphora Resolution

- Input: pronoun plus current and preceding sentences
- Training: hand-labeled corpus of positive examples plus inferred negative examples
- Features
 - Strict number
 - Compatible number
 - Strict gender
 - Compatible gender
 - Sentence distance
• Hobbs distance (noun groups between pronoun and candidate antecedent
• Grammatical role
• Linguistic form (proper name, definite, indefinite, pronominal antecedent)

– From pronouns to general coreference
 • Edit distance for full NPs

Summary: Reference Resolution

• Many approaches to reference resolution
• Use similar information/features but different methods
 – Hobbs’ Syntax
 – Centering coherence
 – Supervised and shallow methods use simple techniques with reasonable success
 – Also “deep” inferential approaches