Speech and Language Processing

SLP Chapter 5

Today

- Parts of speech (POS)
- Tagsets
- POS Tagging
 - Rule-based tagging
 - Hybrid tagging
 - Probabilistic tagging
Parts of Speech

- **Traditional parts of speech**
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
 - Called: parts-of-speech, lexical categories, word classes, morphological classes, lexical tags...
 - Lots of debate within linguistics about the number, nature, and universality of these
 - We’ll completely ignore this debate.

POS examples

- **N** noun *chair, bandwidth, pacing*
- **V** verb *study, debate, munch*
- **ADJ** adjective *purple, tall, ridiculous*
- **ADV** adverb *unfortunately, slowly*
- **P** preposition *of, by, to*
- **PRO** pronoun *I, me, mine*
- **DET** determiner *the, a, that, those*
POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

```
the
koala
put
the
keys
on
the
table
```

```
the
DET
koala
put
the
keys
on
the
table
```
POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

```plaintext
WORD tag

the DET
goala N
put V
the keys N
on V
the N
table V
```
POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

<table>
<thead>
<tr>
<th>WORD</th>
<th>tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>DET</td>
</tr>
<tr>
<td>koala</td>
<td>N</td>
</tr>
<tr>
<td>put</td>
<td>V</td>
</tr>
<tr>
<td>the</td>
<td>DET</td>
</tr>
<tr>
<td>keys</td>
<td></td>
</tr>
<tr>
<td>on</td>
<td></td>
</tr>
<tr>
<td>the</td>
<td></td>
</tr>
<tr>
<td>table</td>
<td></td>
</tr>
</tbody>
</table>
POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

<table>
<thead>
<tr>
<th>WORD</th>
<th>tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>DET</td>
</tr>
<tr>
<td>koala</td>
<td>N</td>
</tr>
<tr>
<td>put</td>
<td>V</td>
</tr>
<tr>
<td>the</td>
<td>DET</td>
</tr>
<tr>
<td>keys</td>
<td>N</td>
</tr>
<tr>
<td>on</td>
<td>P</td>
</tr>
<tr>
<td>the</td>
<td>DET</td>
</tr>
<tr>
<td>table</td>
<td></td>
</tr>
</tbody>
</table>
POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

<table>
<thead>
<tr>
<th>WORD</th>
<th>tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>DET</td>
</tr>
<tr>
<td>koala</td>
<td>N</td>
</tr>
<tr>
<td>put</td>
<td>V</td>
</tr>
<tr>
<td>the</td>
<td>DET</td>
</tr>
<tr>
<td>keys</td>
<td>N</td>
</tr>
<tr>
<td>on</td>
<td>P</td>
</tr>
<tr>
<td>the</td>
<td>DET</td>
</tr>
<tr>
<td>table</td>
<td>N</td>
</tr>
</tbody>
</table>

Why is POS Tagging Useful?

- First step of many practical tasks, e.g.
- Speech synthesis
 - How to pronounce "lead"?
 - Object object
 - Content content
- Parsing
 - Need to know if a word is an N or V before you can parse
- Information extraction
 - Finding names, relations, etc.
Open and Closed Classes

- Closed class: a small fixed membership
 - Prepositions: of, in, by, ...
 - Auxiliaries: may, can, will had, been, ...
 - Pronouns: I, you, she, mine, his, them, ...
 - Usually function words (short common words which play a role in grammar)
- Open class: new ones can be created all the time
 - English has 4: Nouns, Verbs, Adjectives, Adverbs
 - Many languages have these 4, but not all!

Open Class Words

- Nouns
 - Proper nouns (Pittsburgh, Patti Beeson)
 - English capitalizes these.
 - Common nouns (the rest).
 - Count nouns and mass nouns
 - Count: have plurals, get counted: goat/goats, one goat, two goats
 - Mass: don't get counted (snow, salt, communism) (*two snows)
- Adverbs: tend to modify things
 - Unfortunately, John walked home extremely slowly yesterday
 - Directional/locative adverbs (here, home, downhill)
 - Degree adverbs (extremely, very, somewhat)
 - Manner adverbs (slowly, slinkily, delicately)
- Verbs
 - In English, have morphological affixes (eat/eats/eaten)
Closed Class Words

Examples:
- prepositions: on, under, over, ...
- particles: up, down, on, off, ...
- determiners: a, an, the, ...
- pronouns: she, who, I, ..
- conjunctions: and, but, or, ...
- auxiliary verbs: can, may should, ...
- numerals: one, two, three, third, ...

Prepositions from CELEX

<table>
<thead>
<tr>
<th>of</th>
<th>540,085</th>
<th>through</th>
<th>14,964</th>
<th>worth</th>
<th>1,563</th>
<th>pace</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>331,235</td>
<td>after</td>
<td>13,670</td>
<td>toward</td>
<td>1,390</td>
<td>nigh</td>
<td>9</td>
</tr>
<tr>
<td>for</td>
<td>142,421</td>
<td>between</td>
<td>13,275</td>
<td>plus</td>
<td>750</td>
<td>re</td>
<td>4</td>
</tr>
<tr>
<td>to</td>
<td>125,691</td>
<td>under</td>
<td>9,525</td>
<td>till</td>
<td>686</td>
<td>mid</td>
<td>3</td>
</tr>
<tr>
<td>with</td>
<td>124,965</td>
<td>per</td>
<td>6,515</td>
<td>amongst</td>
<td>525</td>
<td>o’er</td>
<td>2</td>
</tr>
<tr>
<td>on</td>
<td>109,129</td>
<td>among</td>
<td>5,090</td>
<td>via</td>
<td>351</td>
<td>but</td>
<td>0</td>
</tr>
<tr>
<td>at</td>
<td>100,169</td>
<td>within</td>
<td>5,030</td>
<td>amid</td>
<td>222</td>
<td>ere</td>
<td>0</td>
</tr>
<tr>
<td>by</td>
<td>77,794</td>
<td>towards</td>
<td>4,700</td>
<td>underneath</td>
<td>164</td>
<td>less</td>
<td>0</td>
</tr>
<tr>
<td>from</td>
<td>74,843</td>
<td>above</td>
<td>3,056</td>
<td>versus</td>
<td>113</td>
<td>midst</td>
<td>0</td>
</tr>
<tr>
<td>about</td>
<td>38,428</td>
<td>near</td>
<td>2,026</td>
<td>amidst</td>
<td>67</td>
<td>o’</td>
<td>0</td>
</tr>
<tr>
<td>than</td>
<td>20,210</td>
<td>off</td>
<td>1,695</td>
<td>sans</td>
<td>20</td>
<td>thru</td>
<td>0</td>
</tr>
<tr>
<td>over</td>
<td>18,071</td>
<td>past</td>
<td>1,575</td>
<td>circa</td>
<td>14</td>
<td>vice</td>
<td>0</td>
</tr>
</tbody>
</table>
POS Tagging

Choosing a Tagset

- There are so many parts of speech, potential distinctions we can draw
- To do POS tagging, we need to choose a standard set of tags to work with
- Could pick very coarse tagsets
- More commonly used set is finer grained, the “Penn TreeBank tagset”, 45 tags
- Even more fine-grained tagsets exist

Penn TreeBank POS Tagset

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
<th>Example</th>
<th>Tag</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>coordinate conjunction</td>
<td>and, but, or</td>
<td>SYM</td>
<td>symbol</td>
<td>+, %, &</td>
</tr>
<tr>
<td>CD</td>
<td>cardinal number</td>
<td>one, two, three</td>
<td>TO</td>
<td>“to”</td>
<td>to</td>
</tr>
<tr>
<td>DT</td>
<td>determiner</td>
<td>a, the</td>
<td>UH</td>
<td>interjection</td>
<td>ah, oops</td>
</tr>
<tr>
<td>EX</td>
<td>existential ‘there’</td>
<td>there</td>
<td>VB</td>
<td>verb, base form</td>
<td>eat</td>
</tr>
<tr>
<td>FW</td>
<td>foreign word</td>
<td>mea culpa</td>
<td>VBD</td>
<td>verb, past tense</td>
<td>ate</td>
</tr>
<tr>
<td>IN</td>
<td>preposition/sub-conj</td>
<td>of, in, by</td>
<td>VBG</td>
<td>verb, gerund</td>
<td>eating</td>
</tr>
<tr>
<td>JJ</td>
<td>adjective</td>
<td>yellow</td>
<td>VBN</td>
<td>verb, past participle</td>
<td>eaten</td>
</tr>
<tr>
<td>JJR</td>
<td>adj., comparative</td>
<td>bigger</td>
<td>VBP</td>
<td>verb, non-3sg pres</td>
<td>eat</td>
</tr>
<tr>
<td>JJT</td>
<td>adj., superlative</td>
<td>wildest</td>
<td>VBZ</td>
<td>verb, 3sg pres</td>
<td>eats</td>
</tr>
<tr>
<td>LS</td>
<td>list item marker</td>
<td>1, 2, One</td>
<td>WDT</td>
<td>wh-determiner</td>
<td>which, that</td>
</tr>
<tr>
<td>MD</td>
<td>modal</td>
<td>can, should</td>
<td>WP</td>
<td>wh-pronoun</td>
<td>what, who</td>
</tr>
<tr>
<td>NN</td>
<td>noun, sing. or mass</td>
<td>llama</td>
<td>WPS</td>
<td>possessive wh-</td>
<td>whose</td>
</tr>
<tr>
<td>NNS</td>
<td>noun, plural</td>
<td>llamas</td>
<td>WRB</td>
<td>wh-adverb</td>
<td>how, where</td>
</tr>
<tr>
<td>NNP</td>
<td>proper noun, singular</td>
<td>IBM</td>
<td>$</td>
<td>dollar sign</td>
<td>$</td>
</tr>
<tr>
<td>NNP</td>
<td>proper noun, plural</td>
<td>Carolinas</td>
<td>#</td>
<td>pound sign</td>
<td>#</td>
</tr>
<tr>
<td>PDT</td>
<td>predeterminer</td>
<td>all, both</td>
<td>“</td>
<td>left quote</td>
<td>‘ or "</td>
</tr>
<tr>
<td>POS</td>
<td>possessive ending</td>
<td>’s</td>
<td>”</td>
<td>right quote</td>
<td>‘ or ”</td>
</tr>
<tr>
<td>PRP</td>
<td>personal pronoun</td>
<td>I, you, he</td>
<td>(</td>
<td>left parenthesis</td>
<td>[, {, <</td>
</tr>
<tr>
<td>PRPS</td>
<td>possessive pronoun</td>
<td>your, one’s</td>
<td>)</td>
<td>right parenthesis</td>
<td>], }, ></td>
</tr>
<tr>
<td>RB</td>
<td>adverb</td>
<td>quickly, never</td>
<td>,</td>
<td>comma</td>
<td>:</td>
</tr>
<tr>
<td>RBR</td>
<td>adverb, comparative</td>
<td>faster</td>
<td>;</td>
<td>sentence-final punctuation</td>
<td>: . ?</td>
</tr>
<tr>
<td>RBS</td>
<td>adverb, superlative</td>
<td>fastest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>particle</td>
<td>up, off</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using the Penn Tagset

- The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
POS Tagging

- Words often have more than one POS:
 - *back*
 - The *back* door = JJ
 - On my *back* = NN
 - Win the voters *back* = RB
 - Promised to *back* the bill = VB
 - The POS tagging problem is to determine the POS tag for a particular instance of a word.

These examples from Dekang Lin
How Hard is POS Tagging?
Measuring Ambiguity

<table>
<thead>
<tr>
<th>Details</th>
<th>87-tag Original Brown</th>
<th>45-tag Treebank Brown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unambiguous (1 tag)</td>
<td>44,019</td>
<td>38,857</td>
</tr>
<tr>
<td>Ambiguous (2–7 tags)</td>
<td>5,490</td>
<td>8844</td>
</tr>
<tr>
<td>2 tags</td>
<td>4,967</td>
<td>6,731</td>
</tr>
<tr>
<td>3 tags</td>
<td>411</td>
<td>1,621</td>
</tr>
<tr>
<td>4 tags</td>
<td>91</td>
<td>357</td>
</tr>
<tr>
<td>5 tags</td>
<td>17</td>
<td>90</td>
</tr>
<tr>
<td>6 tags</td>
<td>2 (well, beat)</td>
<td>32</td>
</tr>
<tr>
<td>7 tags</td>
<td>2 (still, down)</td>
<td>6 (well, set, round, open, fit, down)</td>
</tr>
<tr>
<td>8 tags</td>
<td></td>
<td>4 (is, half, back, a)</td>
</tr>
<tr>
<td>9 tags</td>
<td></td>
<td>3 (that, more, in)</td>
</tr>
</tbody>
</table>

Tagging Whole Sentences with POS is Hard too

- **Ambiguous POS contexts**
 - E.g., *Time flies like an arrow.*

- **Possible POS assignments**
 - *Time/N flies/V like/Prep an/Det arrow/N*
 - *Time/V flies/N like/Prep an/Det arrow/N*
 - *Time/N flies/N like/V an/Det arrow/N*
 -
How Do We Disambiguate POS?

- Many words have only one POS tag (e.g. is, Mary, smallest)
- Others have a single most likely tag (e.g. dog)
- Tags also tend to co-occur regularly with other tags (e.g. Det, N)
- In addition to conditional probabilities of words $P(w_1|w_{n-1})$, we can look at POS likelihoods ($P(t_1|t_{n-1})$) to disambiguate sentences and to assess sentence likelihoods

Methods for POS Tagging

1. Rule-based tagging
2. Hybrid linguistic/statistical
3. Probabilistic sequence models
Rule-Based Tagging

- Start with a dictionary
- Assign all possible tags to words from the dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word.

Start With a Dictionary

- she:
- promised:
- to
- back:
- the:
- bill:
Start With a Dictionary

- she: PRP
- promised: VBN, VBD
- to: TO
- back: VB, JJ, RB, NN
- the: DT
- bill: NN, VB

Assign Every Possible Tag

```
NN
RB
VBN JJ VB
PRP VBD TO VB DT NN
She promised to back the bill
```
Write Rules to Eliminate Tags

Eliminate VBN if VBD is an option when VBN|VBD follows “<start> PRP”

NN
RB
VBN
JJ VB
PRP VBD
TO VB DT NN

She promised to back the bill

Transformation-Based (Brill) Tagging

- Combines Rule-based and Stochastic Tagging
 - Like rule-based because rules are used to specify tags in a certain environment
 - Like stochastic approach because we use a tagged corpus to find the best performing rules
 - Rules are learned from data
- Input:
 - Tagged corpus
 - Dictionary (with most frequent tags)
Transformation-Based Tagging

• Basic Idea: Strip tags from tagged corpus and try to learn them by rule application
 • For untagged, first initialize with most probable tag for each word
 • Change tags according to best rewrite rule, e.g. "if word-1 is a determiner and word is a verb then change the tag to noun"
 • Compare to gold standard
 • Iterate

• Rules created via rule templates, e.g., of the form if word-1 is an X and word is a Y then change the tag to Z"
 • Find rule that applies correctly to most tags and apply
 • Iterate on newly tagged corpus until threshold reached
 • Return ordered set of rules

• NB: Rules may make errors that are corrected by later rules

Templates for TBL

<table>
<thead>
<tr>
<th></th>
<th>Change tags</th>
<th>Condition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NN</td>
<td>To</td>
<td>tv/TO race/NN \rightarrow VB</td>
</tr>
<tr>
<td>2</td>
<td>VBP</td>
<td>One of the previous 3 tags is MD</td>
<td>might/MD vanish/VP \rightarrow VB</td>
</tr>
<tr>
<td>3</td>
<td>NN</td>
<td>One of the previous 2 tags is MD</td>
<td>might/MD not reply/NN \rightarrow VB</td>
</tr>
<tr>
<td>4</td>
<td>VB</td>
<td>One of the previous 2 tags is DT</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>VBD</td>
<td>One of the previous 3 tags is VBZ</td>
<td></td>
</tr>
</tbody>
</table>
Sample TBL Rule Application

- Labels every word with its most-likely tag
 - E.g. `race` occurrences in the Brown corpus:
 - $P(\text{NN} | \text{race}) = .98$
 - $P(\text{VB} | \text{race}) = .02$
 - `is/VBZ expected/VBN to/TO race/NN tomorrow/NN`

- Then TBL applies the following rule
 - “Change NN to VB when previous tag is TO”
 - ... `is/VBZ expected/VBN to/TO race/NN tomorrow/NN`
 - becomes
 - ... `is/VBZ expected/VBN to/TO race/VB tomorrow/NN`
TBL Tagging Algorithm

- Step 1: Label every word with most likely tag (from dictionary)
- Step 2: Check every possible transformation & select one which most improves tag accuracy (cf Gold)
- Step 3: Re-tag corpus applying this rule, and add rule to end of rule set
- Repeat 2-3 until some stopping criterion is reached, e.g., X% correct with respect to training corpus
- RESULT: Ordered set of transformation rules to use on new data tagged only with most likely POS tags

TBL Issues

- Problem: Could keep applying (new) transformations ad infinitum
- Problem: Rules are learned in ordered sequence
- Problem: Rules may interact
- But: Rules are compact and can be inspected by humans
POS Tagging as Sequence Classification

- We are given a sentence (an "observation" or "sequence of observations")
 - *Secretariat is expected to race tomorrow*
- What is the best sequence of tags that corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words $w_1...w_n$.

Getting to HMMs (Hidden Markov Models)

- We want, out of all sequences of n tags $t_1...t_n$ the single tag sequence such that $P(t_1...t_n|w_1...w_n)$ is highest.

$$\hat{t}_1^n = \arg\max_{t_1^n} P(t_1^n|w_1^n)$$

- Hat ^ means "our estimate of the best one"
- Argmax$_x$ f(x) means "the x such that f(x) is maximized"
Getting to HMMs

- This equation is guaranteed to give us the best tag sequence

\[\hat{t}_1^n = \arg\max_{t_1^n} P(t_1^n | w_1^n) \]

- But how to make it operational? How to compute this value?

Intuition of Bayesian classification:

- Use Bayes rule to transform this equation into a set of other probabilities that are easier to compute

Using Bayes Rule

\[P(x|y) = \frac{P(y|x)P(x)}{P(y)} \]

\[\hat{t}_1^n = \arg\max_{t_1^n} \frac{P(w_1^n|t_1^n)P(t_1^n)}{P(w_1^n)} \]

\[\hat{t}_1^n = \arg\max_{t_1^n} P(w_1^n|t_1^n)P(t_1^n) \]
Likelihood and Prior

\[i^n_1 = \text{argmax} \ \underline{P(w^n_1 | t^n_1)} \left/ \underline{P(t^n_1)} \right. \]

\[P(w^n_1 | t^n_1) \approx \prod_{i=1}^{n} P(w_i | t_i) \]

\[P(t^n_1) \approx \prod_{i=1}^{n} P(t_i | t_{i-1}) \]

\[i^n_1 = \text{argmax} P(t^n_1 | w^n_1) \approx \text{argmax} \prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1}) \]

Two Kinds of Probabilities

- Tag transition probabilities \(p(t_i | t_{i-1}) \)
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect \(P(\text{NN}|\text{DT}) \) and \(P(\text{JJ}|\text{DT}) \) to be high
 - But \(P(\text{DT}|\text{JJ}) \) to be:
 - Compute \(P(\text{NN}|\text{DT}) \) by counting in a labeled corpus:
 \[P(t_i | t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})} \]
 \[P(\text{NN}|\text{DT}) = \frac{C(\text{DT}, \text{NN})}{C(\text{DT})} = \frac{56,509}{116,454} = .49 \]
Two Kinds of Probabilities

- Word likelihood probabilities $p(w_i|t_i)$
 - VBZ (3sg Pres verb) likely to be “is”
 - Compute $P(is|VBZ)$ by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

Example: The Verb “race”

- Secretariat/NNP is/VBZ expected/VBN to/TO **race**/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT **race**/NN for/IN outer/JJ space/NN
- How do we pick the right tag?
Disambiguating “race”

Example

- $P(NN|TO) = 0.00047$
- $P(VB|TO) = 0.83$
- $P(race|NN) = 0.00057$
- $P(race|VB) = 0.00012$
- $P(NR|VB) = 0.0027$
- $P(NR|NN) = 0.0012$
- $P(VB|TO)P(NR|VB)P(race|VB) = 0.00000027$
- $P(NN|TO)P(NR|NN)P(race|NN) = 0.0000000032$

- So we (correctly) choose the verb reading
Hidden Markov Models

- What we’ve described with these two kinds of probabilities is a Hidden Markov Model (HMM)

Definitions

- A weighted finite-state automaton adds probabilities to the arcs
 - The sum of the probabilities leaving any arc must sum to one
- A Markov chain is a special case of a WFSA in which the input sequence uniquely determines which states the automaton will go through
- Markov chains can’t represent inherently ambiguous problems
 - Useful for assigning probabilities to unambiguous sequences
Markov Chain for Weather

Weather continued
Markov Chain for Words

Markov Chain: “First-order observable Markov Model”

- A set of states
 - \(Q = q_1, q_2...q_N \); the state at time \(t \) is \(q_t \)

- Transition probabilities:
 - A set of probabilities \(A = a_{01}a_{02}...a_{n1}...a_{nn} \).
 - Each \(a_{ij} \) represents the probability of transitioning from state \(i \) to state \(j \).
 - The set of these is the transition probability matrix \(A \).

- Current state only depends on previous state

\[
P(q_i \mid q_1...q_{i-1}) = P(q_i \mid q_{i-1})
\]
Markov Chain for Weather

- What is the probability of 4 consecutive rainy days?
- Sequence is rainy-rainy-rainy-rainy
- I.e., state sequence is 3-3-3-3
- \(P(3,3,3,3) = \)
 \[\pi_3a_{33}a_{33}a_{33} = 0.2 \times (0.6)^3 = 0.0432 \]
HMM for Ice Cream

- You are a climatologist in the year 2799
- Studying global warming
- You can’t find any records of the weather in Pittsburgh for summer of 2013
- But you find a diary
- Which lists how many ice-creams someone ate every date that summer
- Our job: figure out how hot it was

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
 - See **hot** weather: we’re in state **hot**
- But in part-of-speech tagging (and other things)
 - The output symbols are **words**
 - But the hidden states are **part-of-speech tags**
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don’t know which state we are in.
Hidden Markov Models

- States $Q = q_1, q_2 \ldots q_N$;
- Observations $O = o_1, o_2 \ldots o_N$;
 - Each observation is a symbol from a vocabulary $V = \{v_1, v_2, \ldots v_V\}$
- Transition probabilities
 - Transition probability matrix $A = \{a_{ij}\}$

 $$a_{ij} = P(q_t = j \mid q_{t-1} = i) \quad 1 \leq i, j \leq N$$

- Observation likelihoods
 - Output probability matrix $B = \{b_i(k)\}$

 $$b_i(k) = P(X_t = o_k \mid q_t = i)$$

- Special initial probability vector π

Task

- Given
 - Ice Cream Observation Sequence:

 $$1,2,3,2,2,2,3\ldots$$

- Produce:
 - Weather Sequence: $H,C,H,H,H,C\ldots$
Weather/Ice Cream HMM

- Hidden States: \{Hot, Cold\}
- Transition probabilities (A Matrix) between H and C
- Observations: \{1, 2, 3\} # of ice creams eaten per day

HMM for Ice Cream

\[\pi = [0.8, 0.2] \]

\[A = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} \]

\[B_1 = \begin{bmatrix} 0.2 & 0.4 \\ 0.1 & 0.3 \\ 0.5 & 0.4 \end{bmatrix} \]

\[B_2 = \begin{bmatrix} 0.5 & 0.4 \\ 0.1 & 0.3 \\ 0.2 & 0.4 \end{bmatrix} \]
Back to POS Tagging: Transition Probabilities

Observation Likelihoods
What can HMMs Do?

- **Likelihood:** Given an HMM λ and an observation sequence O, determine the likelihood $P(O, \lambda)$: *language modeling*

- **Decoding:** Given an observation sequence O and an HMM λ, discover the best hidden state sequence Q: Given seq of ice creams, what was the most likely weather on those days? *(tagging)*

- **Learning:** Given an observation sequence O and the set of states in the HMM, learn the HMM parameters

Decoding

- Ok, now we have a complete model that can give us what we need. Recall that we need to get

$$\hat{i}_1^n = \text{argmax}_{i_1^n} P(t_1^n | w_1^n)$$

- We could just enumerate all paths given the input and use the model to assign probabilities to each.
 - Not a good idea.
 - In practice: Viterbi Algorithm (dynamic programming)
Viterbi Algorithm

- Intuition: since state transition out of a state only depend on the current state (and not previous states), we can record for each state the optimal path
- We record
 - Cheapest cost to state at step
 - Backtrace for that state to best predecessor

Viterbi Summary

- Create an array
 - With columns corresponding to inputs
 - Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob path to each cell (not all paths).
Evaluation

- So once you have your POS tagger running how do you evaluate it?
 - Overall error rate with respect to a gold-standard test set.
 - Error rates on particular tags
 - Error rates on particular words
 - Tag confusions...
- Need a baseline – just the most frequent tag is 90% accurate!
Error Analysis

- Look at a confusion matrix

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>JJ</th>
<th>NN</th>
<th>NNP</th>
<th>RB</th>
<th>VBD</th>
<th>VBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>—</td>
<td>.2</td>
<td></td>
<td>.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JJ</td>
<td>.2</td>
<td>—</td>
<td>3.3</td>
<td>2.1</td>
<td>1.7</td>
<td>.2</td>
<td>2.7</td>
</tr>
<tr>
<td>NN</td>
<td>8.7</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.2</td>
</tr>
<tr>
<td>NNP</td>
<td>.2</td>
<td>3.3</td>
<td>4.1</td>
<td>—</td>
<td>.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>2.2</td>
<td>2.0</td>
<td>.5</td>
<td></td>
<td></td>
<td></td>
<td>4.4</td>
</tr>
<tr>
<td>VBD</td>
<td>.3</td>
<td>.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBN</td>
<td>2.8</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- See what errors are causing problems
 - Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
 - Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Evaluation

- The result is compared with a manually coded “Gold Standard”
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.
More Complex Issues

- Tag indeterminacy: when ‘truth’ isn’t clear
 Caribbean cooking, child seat
- Tagging multipart words
 wouldn’t --> would/MD n’t/RB
- How to handle unknown words
 - Assume all tags equally likely
 - Assume same tag distribution as all other singletons in corpus
 - Use morphology, word length,....

Other Tagging Tasks

- Noun Phrase (NP) Chunking
- [the student] said [the exam] is hard
- Three tabs
 - B = beginning of NP
 - I = continuing in NP
 - O = other word
- Tagging result
 - The/B student/I said/O the/B exam/I is/0 hard/0
Summary

- Parts of speech
- Tagsets
- Part of speech tagging
- Rule-Based, Hybrid, HMM Tagging