Final Exam Notes

Coverage: Linguistic Knowledge / Representations & Algorithms, e.g.,
- Sentiment / Naïve Bayes
- Text Classification / Logistic Regression
- Lexical Semantics / Vector Embeddings
- Lexical Semantics / WordNet
- Shallow Sentence Semantics / Information Extraction & Semantic Role Labeling
- Discourse Phenomena / Coreference Resolution
- Evaluation, Bias

Types of questions:

True/False
- The set of near-synonyms for a WordNet sense is called a gloss.
- Yarowsky bootstrapping is a minimally supervised approach to semantic role labeling.
- Goldfish is a homonym of fish.

Short Answer or similar (conceptual)
- What are two independence assumptions that make the naïve Bayes algorithm naive?
- Discuss one similarity and one difference between Wordnet and Framenet.
- Explain how you would intrinsically versus extrinsically evaluate a word sense disambiguation model.
- What is a difference between WordNet-based and distributional measures of similarity?
- What is a (dis)advantage of semi-supervised WSD, compared to full supervision?
- Explain what specific type of ambiguity in language understanding makes the following dialog from the disaster-movie spoof “Airplane!” humorous:
 - Rumack: You'd better tell the Captain we've got to land as soon as we can. This woman has to be gotten to a hospital.
 - Elaine Dickinson: A hospital? What is it?
 - Rumack: It's a big building with patients, but that's not important right biw,

Problem Solving (like hw)
- Train a binarized naïve Bayes model on the following document counts for key sentiment words, with positive or negative class as noted. Use the model to assign a
class (pos or neg) to the sentence A good, good plot but poor acting.

<table>
<thead>
<tr>
<th>doc</th>
<th>"good"</th>
<th>"poor"</th>
<th>(class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1.</td>
<td>3</td>
<td>0</td>
<td>pos</td>
</tr>
<tr>
<td>d2.</td>
<td>2</td>
<td>1</td>
<td>pos</td>
</tr>
<tr>
<td>d3.</td>
<td>1</td>
<td>3</td>
<td>neg</td>
</tr>
<tr>
<td>d4.</td>
<td>1</td>
<td>5</td>
<td>neg</td>
</tr>
<tr>
<td>d5.</td>
<td>0</td>
<td>2</td>
<td>neg</td>
</tr>
</tbody>
</table>

- Represent the semantics of a word using a sparse/dense vector representation
- Compute semantic similarity based on thesaurus/vector representations
- Given an input text, create a gold-standard output for:
 - NER/IE
 - WSD
 - SRL
 - Coreference Resolution