Today

- English Morphology
- Finite-State Transducers

Last time:
Words

• Finite-state methods are particularly useful in dealing with a lexicon
• Many devices, most with limited memory, need access to large lists of words
 ◦ need to perform fairly sophisticated tasks with those lists (e.g. information retrieval / web search, spelling correction)
 ◦ also need to handle new words
• So we’ll first talk about some facts about words and then come back to computational methods

English vs. other languages

• Examples in class are from English
 ◦ Regular verbs typically have only 4 forms, irregular up to 8
 ◦ Can thus accomplish a lot without morphology, by just listing all word forms (e.g., *sit, sits, sat*)
• Morphology is much more essential for other languages
 ◦ Finnish verbs have more than 10,000 forms!
English Morphology

- Morphology is the study of the ways that words are built up from smaller meaningful units called morphemes.
- We can usefully divide morphemes into two classes:
 - **Stems**: The core meaning-bearing units.
 - **Affixes**: Bits and pieces that adhere to stems to change their meanings and grammatical functions.

English Morphology

- We can further divide morphology up into two broad classes:
 - **Inflectional**
 - **Derivational**
Word Classes

- By word class, we have in mind familiar notions like noun and verb
- We’ll go into the gory details in Chapter 5
- Right now we’re concerned with word classes because the way that stems and affixes combine is based to a large degree on the word class of the stem

Computational Morphology

Recognition/Analysis
leaf N Pl
leave N Pl
leave V Sg3
leaves

Generation
hang V Past
hanged
hung
To support computation

- Lexicon (stems and affix list)

- Morphotactics
 - Words are composed of smaller elements that must be combined in a certain order
 - piti-less-ness is English
 - piti-ness-less is not English

- Orthographic Alternations
 - Spelling may vary depending on the context
 - pity is realized as piti in pitilessness
 - die becomes dy in dying

Inflectional Morphology

- Inflectional morphology concerns the combination of stems and affixes where the resulting word:
 - Has the same word class as the original
 - Serves a grammatical/semantic purpose that is
 - Different from the original
 - But is nevertheless transparently related to the original
Nouns and Verbs in English

- Nouns are simple
 - Markers for plural and possessive
- Verbs are only slightly more complex
 - Markers appropriate to the tense of the verb

Regulars and Irregulars

- It is a little complicated by the fact that some words misbehave (refuse to follow the rules)
 - Mouse/mice, goose/geese, ox/oxen
 - Go/went, fly/flew
- The terms regular and irregular are used to refer to words that follow the rules and those that don’t
Regular and Irregular Verbs

• Regulars...
 ♦ Walk, walks, walking, walked, walked

• Irregulars
 ♦ Eat, eats, eating, ate, eaten
 ♦ Catch, catches, catching, caught, caught
 ♦ Cut, cuts, cutting, cut, cut

Inflectional Morphology

• So inflectional morphology in English is fairly straightforward
• But is complicated by the fact that are irregularities
Derivational Morphology

• Derivational morphology is the messy stuff that no one ever taught you.
 - Quasi-systematicity
 - Irregular meaning change
 - Changes of word class

Derivational Examples

• Verbs and Adjectives to Nouns

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-ation</td>
<td>computerize</td>
<td>computerization</td>
</tr>
<tr>
<td>-ee</td>
<td>appoint</td>
<td>appointee</td>
</tr>
<tr>
<td>-er</td>
<td>kill</td>
<td>killer</td>
</tr>
<tr>
<td>-ness</td>
<td>fuzzy</td>
<td>fuzziness</td>
</tr>
</tbody>
</table>
Derivational Examples

- Nouns and Verbs to Adjectives

<table>
<thead>
<tr>
<th>-al</th>
<th>computation</th>
<th>computational</th>
</tr>
</thead>
<tbody>
<tr>
<td>-able</td>
<td>embrace</td>
<td>embraceable</td>
</tr>
<tr>
<td>-less</td>
<td>clue</td>
<td>clueless</td>
</tr>
</tbody>
</table>

Example: Compute

- Many paths are possible...
- Start with compute
 - Computer -> computerize -> computerization
 - Computer -> computerize -> computerizable
- But not all paths/operations are equally good (allowable?)
 - Clue
 - Clue -> *clueable
Morphology and FSAs

- We’d like to use the machinery provided by FSAs to capture these facts about morphology
 - Accept strings that are in the language
 - Reject strings that are not
 - And do so in a way that doesn’t require us to in effect list all the words in the language

Start Simple

- Regular singular nouns are ok
- Regular plural nouns have an -s on the end
- Irregulars are ok as is

- What is the FSA?
Now Plug in the Words

Derivational Rules

If everything is an accept state how do things ever get rejected?
Another example

(NP pref) Noun (NSuf) | Adj (AdjSuff) | Adv

Problems?

9/7/2011

Speech and Language Processing - Jurafsky and Martin

23

Parsing/Generation vs. Recognition

• We can now run strings through these machines to recognize strings in the language
• But recognition is usually not quite what we need
 ♦ Often if we find some string in the language we might like to assign a structure to it (parsing)
 ♦ Or we might have some structure and we want to produce a surface form for it (production/generation)
• Example
 ♦ From “cats” to “cat +N +PL”
Finite State Transducers

- The simple story
 - Add another tape
 - Add extra symbols to the transitions
 - On one tape we read “cats”, on the other we write “cat +N +PL”

FSTs

Lexical: cat +N +PL

Surface: cats
Transitions

- c:c means read a c on one tape and write a c on the other
- +N:ε means read a +N symbol on one tape and write nothing on the other
- +PL:s means read +PL and write an s

Typical Uses

- Typically, we’ll read from one tape using the first symbol on the machine transitions (just as in a simple FSA).
- And we’ll write to the second tape using the other symbols on the transitions.
Ambiguity

- Recall that in non-deterministic recognition multiple paths through a machine may lead to an accept state.
 - Didn’t matter which path was actually traversed
- In FSTs the path to an accept state does matter since different paths represent different parses and different outputs will result

Ambiguity

- What’s the right parse (segmentation) for
 - Unionizable
 - Union-ize-able
 - Un-ion-ize-able
- Each represents a valid path through the derivational morphology machine.
Ambiguity

• There are a number of ways to deal with this problem
 • Simply take the first output found
 • Find all the possible outputs (all paths) and return them all (without choosing)
 • Bias the search so that only one or a few likely paths are explored

The Gory Details

• Of course, it's not as easy as
 • "cat +N +PL" <-> "cats"
• As we saw earlier there are geese, mice and oxen
• But there are also a whole host of spelling/pronunciation changes that go along with inflectional changes
 • Cats vs Dogs
 • Fox and Foxes
Multi-Tape Machines

- To deal with these complications, we will add more tapes and use the output of one tape machine as the input to the next.
- So to handle irregular spelling changes we’ll add intermediate tapes with intermediate symbols.

Multi-Level Tape Machines

- We use one machine to transduce between the lexical and the intermediate level, and another to handle the spelling changes to the surface tape.
Lexical to Intermediate Level

Intermediate to Surface

- The add an “e” rule as in $\text{fox}^s\# \leftrightarrow \text{foxes}\#$
Exercise: Change to transducer

(FPref) Noun (NSuf) | Adj (AdjSuff) | Adv
Cascades

• This is an architecture that we’ll see again and again
 • Overall processing is divided up into distinct rewrite steps
 • The output of one layer serves as the input to the next
 • The intermediate tapes may or may not wind up being useful in their own right

Related Applications

• Stemming
• Word and Sentence Tokenization
 ♦ English
 ♦ Chinese via maxmatch
• Spelling Error Detection (non-word)
 ♦ Correction via minimum edit distance, and alignment tweek
• Human Morphological Processing
Toolkits

- AT&T FSM Library
 - http://www2.research.att.com/~fsmtools/fsm

- OpenFST Library (Google and NYU)
 - http://www.openfst.org

- Carmel Toolkit
 - http://www.isi.edu/licensed-sw/carmel

- FSA Toolkit

- Current research – learning the knowledge