Search vs. planning

STRIPS operators

Partial-order planning
Search vs. planning

Consider the task *get milk, bananas, and a cordless drill*
Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate
Planning systems do the following:

1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>States</td>
<td>Data structures</td>
<td>Logical sentences</td>
</tr>
<tr>
<td>Actions</td>
<td>Code</td>
<td>Preconditions/outcomes</td>
</tr>
<tr>
<td>Goal</td>
<td>Code</td>
<td>Logical sentence (conjunction)</td>
</tr>
<tr>
<td>Plan</td>
<td>Sequence from S_0</td>
<td>Constraints on actions</td>
</tr>
</tbody>
</table>
STRIPS operators

Tidily arranged actions descriptions, restricted language

ACTION: $Buy(x)$

PRECONDITION: $At(p), Sells(p, x)$

EFFECT: $Have(x)$

[Note: this abstracts away many important details!]

Restricted language \Rightarrow efficient algorithm

- Precondition: conjunction of positive literals
- Effect: conjunction of literals

A complete set of STRIPS operators can be translated into a set of successor-state axioms
Partially ordered plans

Partially ordered collection of steps with
- *Start step* has the initial state description as its effect
- *Finish step* has the goal description as its precondition
- *causal links* from outcome of one step to precondition of another
- *temporal ordering* between pairs of steps

Open condition = precondition of a step not yet causally linked

A plan is *complete* iff every precondition is achieved

A precondition is *achieved* iff it is the effect of an earlier step and no *possibly intervening* step undoes it
Example

Start

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish
Example

Start

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(HWS) Sells(HWS,Drill)

Buy(Drill)

At(x)

Go(SM)

At(SM) Sells(SM,Milk)

Buy(Milk)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish
Example

\[\text{Start} \rightarrow \text{At(Home)} \rightarrow \text{Go(HWS)} \rightarrow \text{At(HWS)} \rightarrow \text{Buy(Drill)} \rightarrow \text{At(HWS)} \rightarrow \text{Go(SM)} \rightarrow \text{At(SM)} \rightarrow \text{Buy(Milk)} \rightarrow \text{At(SM)} \rightarrow \text{Buy(Ban.)} \rightarrow \text{At(SM)} \rightarrow \text{Go(Home)} \rightarrow \text{Finish}\]
Planning process

Operators on partial plans:
- add a link from an existing action to an open condition
- add a step to fulfill an open condition
- order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans

Backtrack if an open condition is unachievable or
if a conflict is unresolvable
Clobbering and promotion/demotion

A **clobberer** is a potentially intervening step that destroys the condition achieved by a causal link. E.g., $Go(Home)$ clobbers $At(Supermarket)$:

Demotion: put before $Go(Supermarket)$

Promotion: put after $Buy(Milk)$
Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:
- choice of S_{add} to achieve S_{need}
- choice of demotion or promotion for clobberer
- selection of S_{need} is irrevocable

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals

Can be made efficient with good heuristics derived from problem description

Particularly good for problems with many loosely related subgoals
Example: Blocks world

"Sussman anomaly" problem

Start State

\[\text{Clear}(x) \ \text{On}(x,z) \ \text{Clear}(y) \]

\[\text{PutOn}(x,y) \]

\[\neg\text{On}(x,z) \ \neg\text{Clear}(y) \]

\[\text{Clear}(z) \ \text{On}(x,y) \]

Goal State

\[\text{Clear}(x) \ \text{On}(x,z) \]

\[\text{PutOnTable}(x) \]

\[\neg\text{On}(x,z) \]

\[\text{Clear}(z) \ \text{On}(x,\text{Table}) \]

+ several inequality constraints
Example contd.

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

On(A,B) On(B,C)

FINISH
Example contd.

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

Cl(B) On(B,z) Cl(C)

PutOn(B,C)

On(A,B) On(B,C)

FINISH
Example contd.

On(A,B) On(B,C)

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

PutOn(A,B)

PutOn(A,B) clobbers Cl(B) => order after PutOn(B,C)

On(A,z) Cl(B)

Cl(A) On(A,z) Cl(B)

Cl(B) On(B,z) Cl(C)

On(B,z) Cl(C)

Cl(B)

Cl(A)

On(A,B)

On(A,B) On(B,C)

Finish

PutOn(B,C)
Example contd.

On(A,B) On(B,C) On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(A,B) Cl(A) On(A,z) Cl(B)

PutOn(B,C) Cl(B) On(B,z) Cl(C)

PutOnTable(C) Cl(C)

On(C,z) Cl(C)

PutOnTable(C)

On(C,Table) Cl(B) On(B,Table) Cl(C)

PutOnTable(C)

PutOnTable(C)

PutOnTable(C)

FINISH

PutOn(A,B) clobbers Cl(B) => order after PutOn(B,C)

PutOn(B,C) clobbers Cl(C) => order after PutOnTable(C)