Planning as Search-based Problem Solving?

Imagine a supermarket shopping scenario using search-based problem solving:

- **Goal**: buy milk and bananas
- **Operator**: buy \(<\text{obj}>\)
- **Heuristic function**: does \(<\text{obj}> = \text{milk or bananas}\)?

The operator would be instantiated with all possible objects that can be bought! Then the heuristic function would evaluate each instantiation. This is essentially a guessing game!
Least Commitment

Or...suppose you haven’t decided where to go shopping.

- **Goal**: buy milk and bananas

- **Operators**: go_to<store>, buy <obj, store>

- You can get milk at the convenience store, at the dairy, or at the supermarket.

- You can only get bananas at the supermarket.

If you decide where to buy milk first (say, at the convenience store), then you will either: (a) have to backtrack, or (b) have to go to more than one store!

Planners have to be flexible (add actions or instantiate variables in any order) and usually follow the principle of *least commitment*.
Planning vs. Search-based Problem Solving

Problem solving: actions generate successor states.

Planning: actions are represented as preconditions and effects.

Problem solving: state representations are complete.

Planning: complete state descriptions would be enormous.

Problem solving: goal test and heuristic function used to evaluate states.

Planning: goals are usually represented as a conjunct of state variables.

Problem solving: incrementally generates solution as a sequence of actions.

Planning: can add actions to any part of the plan at any time.
The STRIPS Language

STRIPS (Stanford Research Institute Problem Solver) was a pioneering planning program developed in 1970. The STRIPS “language” is still widely used today to represent states and operators.

States and Goals: Conjunctions of function-free literals.

Operators:

- **action description:** name for action; command to environment.
- **preconditions:** conjunction of atoms that must be true before the operator can be applied.
- **effects:** add list and delete list
STRAIPS Operators

Operator 1: MOVE_BLOCK_TO_BLOCK
preconds: \(\text{block}(x) \land \text{block}(y) \land \text{block}(z) \land \text{on}(x, y) \land \text{clear}(x) \land \text{clear}(z) \)
effects: Add: \(\text{on}(x, z), \text{clear}(y) \)
Delete: \(\text{on}(x, y), \text{clear}(z) \)

Operator 2: MOVE_BLOCK_TO_TABLE
preconds: \(\text{block}(x) \land \text{block}(y) \land \text{on}(x, y) \land \text{clear}(x) \)
effects: Add: \(\text{on}(x, \text{Table}), \text{clear}(y) \)
Delete: \(\text{on}(x, y) \)

Operator 3: MOVE_BLOCK_FROM_TABLE
preconds: \(\text{block}(x) \land \text{block}(y) \land \text{on}(x, \text{Table}) \land \text{clear}(x) \land \text{clear}(z) \)
effects: Add: \(\text{on}(x, z) \)
Delete: \(\text{on}(x, \text{Table}), \text{clear}(z) \)
Plan by Searching for a Satisfactory Sequence of Operators

Situation Space Planner Searches through space of possible situations; much like search-based problem solving.

Progression Planner Forward search from the initial situation to the goal situation.

> Usually doesn’t work well; branching factor too high yields exponential growth of tree.

Regression Planner Backward search from the goal situation to the initial situation.

> Works better because goal state typically has only a few conjuncts so only a few operators apply. But complicated because the conjunction of goals needs to be satisfied.
Planning Example

Initial Situation:
on(A,C), on(C,Table), on(D,B), on(B,Table), clear(A), clear(D)

Goal Situation:
on(A,B), on(B,C)
Searching Plan Space

Alternative is to search through the space of plans rather than the space of situations.

Start with simple, incomplete partial plan; expand until complete.

Operators: add a step, impose an ordering on existing steps, instantiate a previously unbound variable.

Solution: final plan.
Plan Representation

Most planners use the principle of **least commitment**.

Partial order planner: represents plans in which some steps are ordered and other steps are unordered.

Total order planner: simple list of steps.

A totally ordered plan that is derived from a plan P by adding ordering constraints is called a **linearization** of P.
Partial Order Plan:

```
Start
  /\  \\
LeftSock   RightSock
  |   |
  v   v
LeftSockOn RightSockOn
  /\  \\
LeftShoe   RightShoe
  |   |
  v   v
LeftShoeOn, RightShoeOn
```

Total Order Plans:

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
LeftSock
  /\  \\
RightShoe   LeftShoe
  |   |
  v   v
LeftShoe
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
  /\  \\
LeftShoe   RightShoe
  |   |
  v   v
RightShoe
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
LeftSock
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
LeftSock
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
  /\  \\
LeftShoe   RightShoe
  |   |
  v   v
RightShoe
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
  /\  \\
LeftShoe   RightShoe
  |   |
  v   v
RightShoe
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
  /\  \\
LeftShoe   RightShoe
  |   |
  v   v
RightShoe
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
  /\  \\
LeftShoe   RightShoe
  |   |
  v   v
RightShoe
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
  /\  \\
LeftShoe   RightShoe
  |   |
  v   v
RightShoe
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
  /\  \\
LeftShoe   RightShoe
  |   |
  v   v
RightShoe
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
  /\  \\
LeftShoe   RightShoe
  |   |
  v   v
RightShoe
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
  /\  \\
LeftShoe   RightShoe
  |   |
  v   v
RightShoe
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
  /\  \\
LeftShoe   RightShoe
  |   |
  v   v
RightShoe
```

```
Start
  /\  \\
RightSock   LeftSock
  |   |
  v   v
RightSock
```
Components of a Plan

1. A set of plan steps. Each step is one of the operators for the problem.

2. A set of step ordering constraints, $S_i < S_j$.

3. A set of variable binding constraints, $v = x$ where v is a variable and x is a constant or another variable.

4. A set of causal links, $S_i \xrightarrow{c} S_j$ (S_i achieves precondition c for S_j.)
What is a solution?

You might expect that only fully instantiated, totally ordered plans would be considered solutions. But this is not a good idea for several reasons:

- It makes more sense to have a planner return a partial order plan than to arbitrarily choose one linearization of it.

- Sometimes actions can be performed in parallel, so it is best to generate solutions that allow for actions to happen in parallel.

- A plan may be integrated with another plan later. Keeping the plan flexible can help with plan integration.
We consider a plan to be a solution if it is complete and consistent.

A complete plan is one in which every precondition is achieved by another step. A precondition is achieved if it is an effect of a step and no other step can cancel it out. Formally:

\(S_i \text{ achieves precondition } c \text{ of } S_j \) if

1. \(S_i \prec S_j \) and \(c \in \text{EFFECTS}(S_i) \), and
2. there is no step \(S_k \) such that \((\neg c) \in \text{EFFECTS}(S_k) \) where
 \(S_i \prec S_k \prec S_j \) in some linearization of the plan.

A consistent plan is a plan with no contradictions in the ordering or binding of constraints.

A contradiction occurs when \(S_i \prec S_j \) and \(S_j \prec S_i \) or if \(v = A \) and \(v = B \) for different constants \(A \) and \(B \).

Under this definition, the partial plan for putting on socks is a solution!
Partial-Order Regression Planner Example

Suppose you want a plan to buy milk, bananas, and a drill. The initial plan might be:

\[
\text{Start} \\ \\
\text{At(Home)} \quad \text{Sells(SM,Banana)} \quad \text{Sells(SM,Milk)} \quad \text{Sells(HWS,Drill)} \\
\text{Have(Drill)} \quad \text{Have(Milk)} \quad \text{Have(Banana)} \quad \text{At(Home)} \\
\text{Finish}
\]
Operators

Operator:
ACTION = Go(there)
PRECONDITIONS = At(here)
EFFECTS = At(there) \land \neg At(here)

Operator:
ACTION = Buy(obj)
PRECONDITIONS = At(store) \land Sells(store,obj)
EFFECT = have(obj)

To keep the search focused, the planner only considers adding steps that achieve a precondition that has not yet been achieved.
The plan is extended by choosing Go actions to achieve the At preconditions.

Note that the Go actions have unachieved preconditions that interact!
Look what happens if the planner tries to achieve the preconditions of Go with the $At(home)$ condition in the initial state!
A planner can notice dead ends

- This partial plan is a dead end because one step *clobbers* a protected condition for another step.

- The planner must pay attention to the clausal links which are protected. The planner must ensure that *threats* (steps which can clobber protected preconditions) are ordered to come before or after the protected link.

- Threats can be added by adding ordering constraints to put the threat before the protected link (*demotion*) or after the protected link (*promotion*).
The Sussman Anomaly

Focusing on one conjunct at a time can make clobbering unavoidable.
Ordering constraints aren’t always enough...

- Unfortunately, there is no way to reorder the Go threat because any order will delete the At(home) condition of the other step.

- When a planner can’t resolve a threat, it has no choice but to backtrack.

- Suppose we trying adding a causal link from Go(HWS) to Go(SM). Now Go(SM) threatens the At(HWS) precondition of Buy(drill).

- We can resolve this threat by ordering Go(SM) to come after Buy(drill).
function POP(initial, goal, operators) returns plan

 plan ← MAKE-MINIMAL-PLAN(initial, goal)

loop do
 if SOLUTION?(plan) then return plan
 Sneed, c ← SELECT-SUBGOAL(plan)
 CHOOSE-OPERATOR(plan, operators, Sneed, c)
 RESOLVE-THREATS(plan)
end

function SELECT-SUBGOAL(plan) returns Sneed, c

 pick a plan step Sneed from STEPS(plan)
 with a precondition c that has not been achieved
 return Sneed, c

procedure CHOOSE-OPERATOR(plan, operators, Sneed, c)

 choose a step Sadd from operators or STEPS(plan) that has c as an effect
 if there is no such step then fail
 add the causal link Sadd \rightarrow Sneed to LINKS(plan)
 add the ordering constraint Sadd \rightarrow Sneed to ORDERINGS(plan)
 if Sadd is a newly added step from operators then
 add Sadd to STEPS(plan)
 add Start \prec Sadd \prec Finish to ORDERINGS(plan)
end

procedure RESOLVE-THREATS(plan)

 for each Sthreat that threatens a link S_i \rightarrow S_j in LINKS(plan) do
 choose either
 Promotion: Add Sthreat \prec S_i to ORDERINGS(plan)
 Demotion: Add S_j \prec Sthreat to ORDERINGS(plan)
 if not CONSISTENT(plan) then fail
 end
Possible Threats

Variables can be left unbound in plans. If an operator produces an effect that could cause a threat if the variable takes a certain binding, then it is a possible threat.

There are three general approaches to dealing with possible threats:

1. Resolve now by forcing a variable binding. The commitment may cause trouble later though.

2. Resolve now with an inequality constraint \((x \neq \text{home})\). Less commitment, but more complicated for unification algorithms.

3. Ignore possible threats and only deal with them when they become known threats. For example, if \(x = \text{home}\) is added then resolve the threat. Low commitment, but can’t say for sure that the plan is a solution.
Practical Applications for Planners

Job shop scheduling: assembling, manufacturing

Space missions: orchestrating observational equipment to maximize data acquisition while minimizing time and energy consumption.

Construction: Building facilities, airplanes, spacecraft, etc.

Event scheduling: Scheduling meetings, classes, and other events.
Limitations of the STRIPS language

Hierarchical planning: Generating complex plans often requires abstract planning over increasingly detailed search spaces.

Complex state conditions: STRIPS variables have limited in their complexity. For example, there is no quantification and no conditional statements.

Representing time: The STRIPS framework assumes that everything happens instantly. There is no way to represent duration, deadlines, time windows, etc.

Resource limitations: In the real world, resources are limited. You need to represent the fact that the number of available workers, equipment, money, etc. is constrained.