More Machine Learning

(Chapter 18)
Another Information Example

<table>
<thead>
<tr>
<th></th>
<th>stock</th>
<th>rolling</th>
<th>the</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>40</td>
<td>other</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>8</td>
<td>35</td>
<td>finance</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td>25</td>
<td>other</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
<td>14</td>
<td>other</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>2</td>
<td>20</td>
<td>finance</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>4</td>
<td>25</td>
<td>finance</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>6</td>
<td>20</td>
<td>finance</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
<td>35</td>
<td>other</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>11</td>
<td>25</td>
<td>finance</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>15</td>
<td>28</td>
<td>other</td>
</tr>
</tbody>
</table>
Gain(rolling) = 1 - \left[\frac{4}{10} H(1/2, 1/2) + \frac{4}{10} H(1/2, 1/2) + \frac{2}{10} H(1/2, 1/2) \right] = 0
ML in Practice: General Approach

- Formulate task
- Obtain data
- What representation should be used? (attribute/value pairs)
- Annotate data
- Learn/refine model with data (training)
- Use model for classification or prediction on unseen data (testing)
- Measure accuracy
Issues

• Representation
 • How to map from a representation in the domain to a representation used for learning?

• Training data
 • How can training data be acquired?

• Amount of training data
 • How well does the algorithm do as we vary the amount of data?

• Which attributes influence learning most?
• Does the learning algorithm provide insight into the generalizations made?
Other Decision Tree cases

• What if class is discrete valued, not binary?

• What if an attribute has many values (e.g., 1 per instance)?
Training vs. Testing

• A learning algorithm is good if it uses its learned hypothesis to make accurate predictions on unseen data
 • Collect a large set of examples (with classifications)
 • Divide into two disjoint sets: the training set and the test set
 • Apply the learning algorithm to the training set, generating hypothesis \(h \)
 • Measure the percentage of examples in the test set that are correctly classified by \(h \)
 • Repeat for different sizes of training sets and different randomly selected training sets of each size.
Division into 3 sets

- Inadvertent peeking
 - Parameters that must be learned (e.g., how to split values)
 - Generate different hypotheses for different parameter values on training data
 - Choose values that perform best on testing data

- Why do we need to do this for selecting best attributes?
Stop at tree size 7
Overfitting

• Learning algorithms may use irrelevant attributes to make decisions
 – For news, day published and newspaper

• Decision tree pruning
 – Prune away attributes with low information gain
 – Use statistical significance to test whether gain is meaningful
K-fold Cross Validation

• To reduce overfitting

• Run k experiments
 – Use a different 1/k of data for testing each time
 – Average the results

• 5-fold, 10-fold, leave-one-out
Not all errors are always equal

• Express utilities via a loss function
• Other metrics besides accuracy (recall, precision, f-measure)
More room for improvement by increasing training set rather than improving algorithm!
Ensemble Learning

• Learn from a collection of hypotheses

• Majority voting

• Enlarges the hypothesis space
Boosting

- Uses a weighted training set
 - Each example as an associated weight $w_j \geq 0$
 - Higher weighted examples have higher importance
- Initially, $w_j=1$ for all examples
- Next round: increase weights of misclassified examples, decrease other weights
- From the new weighted set, generate hypothesis h_2
- Continue until M hypotheses generated
- Final ensemble hypothesis = weighted-majority combination of all M hypotheses
 - Weight each hypothesis according to how well it did on training data
AdaBoost

• If input learning algorithm is a weak learning algorithm
 – L always returns a hypothesis with weighted error on training slightly better than random
• Returns hypothesis that classifies training data perfectly for large enough M
• *Boosts* the accuracy of the original learning algorithm on training data

• To be continued in last set of slides…
Beyond this course

• Read if you are interested
 – Section 18.5 – learning theory
 – Section 18.6-18.9 - beyond decision trees