CS 2710 / ISSP 2610

Planning
Planning

- What is classical planning?
- Approaches
 - STRIPS/PDDL
 - State-Space Search
 - Planning Graphs
 - Satisfiability
 - Situation Calculus
 - Partially Ordered Plans
Planning problem

• Find a **sequence of actions** that achieves a given **goal** when executed from a given **initial world state**. That is, given
 – a set of operator descriptions (defining the possible primitive actions by the agent),
 – an initial state description, and
 – a goal state description or predicate,

compute a plan, which is
 – a sequence of operator instances, such that executing them in the initial state will change the world to a state satisfying the goal-state description.

• Goals are usually specified as a conjunction of goals to be achieved
Planning as Search-Based Problem Solving?

• Imagine a supermarket shopping scenario using search-based problem solving:

 – Goal: buy milk and bananas
 – Operator: buy <obj>
 – Heuristic function: does <obj> = milk or bananas?

• The operator would be instantiated with all possible objects that can be bought! Then the heuristic function would evaluate each instantiation. This is essentially a guessing game!
Least Commitment

• Or… suppose you haven’t decided where to go shopping.
 – Goal: buy milk and bananas
 – Operators: go_to<store>, buy<obj,store>
 – You can get milk at the convenience store, the dairy, or the supermarket.
 – You can only get bananas at the supermarket.

• If you decide where to buy milk first (say, at the convenience store), then you will either:
 – have to backtrack, or
 – have to go to more than one store!

• Planners need to be more flexible
Planning vs. problem solving

• Planning and problem solving methods can often solve the same sorts of problems
• Planning is more powerful because of the representations and methods used
• States, goals, and actions are decomposed into sets of sentences (usually in first-order logic)
• Search can proceed through plan space rather than state space (though there are also state-space planners)
• Subgoals can be planned independently, reducing the complexity of the planning problem
Typical assumptions

• Atomic time: Each action is indivisible
• No concurrent actions are allowed (though actions do not need to be ordered with respect to each other in the plan)
• Deterministic actions: The result of actions are completely determined—there is no uncertainty in their effects
• Agent is the sole cause of change in the world
• Agent is omniscient: Has complete knowledge of the state of the world
• Closed World Assumption: everything known to be true in the world is included in the state description. Anything not listed is false.
Blocks world

The **blocks world** is a micro-world that consists of a table, a set of blocks and a robot hand.

Some domain constraints:
- Only one block can be on another block
- Any number of blocks can be on the table
- The hand can only hold one block

Typical representation:
- ontable(a)
- ontable(c)
- on(b,a)
- handempty
- clear(b)
- clear(c)
Situation calculus planning

• Intuition: Represent the planning problem using first-order logic
 – Situation calculus lets us reason about changes in the world
 – Use theorem proving to “prove” that a particular sequence of actions, when applied to the situation characterizing the world state, will lead to a desired result
Situation Calculus

• Logic for reasoning about changes in the state of the world
• The world is described by
 – Sequences of situations of the current state
 – Changes from one situation to another are caused by actions
• The situation calculus allows us to
 – Describe the initial state and a goal state
 – Build the KB that describes the effect of actions (operators)
 – Prove that the KB and the initial state lead to a goal state
 – Extracts a plan as side-effect of the proof
Situation Calculus Ontology

• Actions: terms, such as “forward” and “turn(right))”

• Situations: terms; initial situation s0 and all situations that are generated by applying an action to a situation. result(a,s) names the situation resulting when action a is done in situation s.
Situation Calculus Ontology continued

• **Fluents:** functions and predicates that vary from one situation to the next. By convention, the situation is the last argument of the fluent.
 \(~\text{holding(robot,gold,s0)}\)

• **Atemporal** or **eternal** predicates and functions do not change from situation to situation.
 \(\text{gold(g1)}\).
 \(\text{lastName(wumpus,smith)}\).
 \(\text{adjacent(livingRoom,kitchen)}\).
Frame Problem

• We run into the frame problem
• Effect axioms say what changes, but don’t say what stays the same
• A real problem, because (in a non-toy domain), each action affects only a tiny fraction of all fluents

• We will return to situation calculus later…
Basic representations for planning

• Classic approach first used in the STRIPS planner circa 1970
• States represented as a conjunction of ground literals
 – at(Home) ^ ~have(Milk) ^ ~have(bananas) ...
• Goals are conjunctions of literals, but may have variables which are assumed to be existentially quantified
 – at(?x) ^ have(Milk) ^ have(bananas) ...
• Do not need to fully specify state
 – Non-specified either don’t-care or assumed false
 – Represent many cases in small storage
 – Often only represent changes in state rather than entire situation
• Unlike theorem prover, not seeking whether the goal is true, but is there a sequence of actions to attain it
Operator/action representation

- Operators contain three components:
 - **Action description**
 - **Precondition** - conjunction of positive literals
 - **Effect** - conjunction of positive or negative literals which describe how situation changes when operator is applied

- Example:

 \[
 \text{Op}\left[\text{Action: Go(there)}, \right.
 \text{Precond: } \text{At(here)} \land \text{Path(here,there)},
 \text{Effect: } \text{At(there)} \land \neg \text{At(here)} \right]
 \]

- All variables are universally quantified

- Situation variables are implicit
 - preconditions must be true in the state immediately before operator is applied; effects are true immediately after
Blocks world operators

- Here are the classic basic operations for the blocks world:
 - stack(X,Y): put block X on block Y
 - unstack(X,Y): remove block X from block Y
 - pickup(X): pickup block X from the table
 - putdown(X): put block X on the table

- Each will be represented by
 - a list of preconditions
 - a list of new facts to be added (add-effects)
 - a list of facts to be removed (delete-effects)
 - optionally, a set of (simple) variable constraints

- For example:

 preconditions(stack(X,Y), [holding(X), clear(Y)])
 deletes(stack(X,Y), [holding(X), clear(Y)]).
 adds(stack(X,Y), [handempty, on(X,Y), clear(X)])
 constraints(stack(X,Y), [X != Y, Y != table, X != table])
Blocks world operators II

operator(stack(X,Y),
 Precond [holding(X),clear(Y)],
 Add [handempty, on(X,Y), clear(X)],
 Delete [holding(X), clear(Y)],
 Constr [X ~ = Y, Y ~ = table, X ~ = table]).

operator(unstack(X,Y),
 [on(X,Y), clear(X), handempty],
 [holding(X), clear(Y)],
 [handempty, clear(X), on(X,Y)],
 [X ~ = Y, Y ~ = table, X ~ = table]).

operator(pickup(X),
 [ontable(X), clear(X), handempty],
 [holding(X)],
 [ontable(X), clear(X), handempty],
 [X ~ = table]).

operator(putdown(X),
 [holding(X)],
 [ontable(X), handempty, clear(X)],
 [holding(X)],
 [X ~ = table]).
Typical BW planning problem

Initial state:
- clear(a)
- clear(b)
- clear(c)
- ontable(a)
- ontable(b)
- ontable(c)
- handempty

Goal:
- on(b,c)
- on(a,b)
- ontable(c)

A plan:
- pickup(b)
- stack(b,c)
- pickup(a)
- stack(a,b)
Another BW planning problem

Initial state:
- clear(a)
- clear(b)
- clear(c)
- ontable(a)
- ontable(b)
- ontable(c)
- handempty

Goal:
- on(a,b)
- on(b,c)
- ontable(c)

A plan:
- pickup(a)
- stack(a,b)
- unstack(a,b)
- putdown(a)
- pickup(b)
- stack(b,c)
- pickup(a)
- stack(a,b)
Goal interaction

• Simple planning algorithms assume that the goals to be achieved are independent
 – Each can be solved separately and then the solutions concatenated
• This planning problem, called the “Sussman Anomaly,” is the classic example of the goal interaction problem:
 – Solving on(A,B) first (by doing unstack(C,A), stack(A,B) will be undone when solving the second goal on(B,C) (by doing unstack(A,B), stack(B,C)).
 – Solving on(B,C) first will be undone when solving on(A,B)
• Classic STRIPS could not handle this, although minor modifications can get it to do simple cases
State-space planning

- We initially have a space of situations (where you are, what you have, etc.)
- The plan is a solution found by “searching” through the situations to get to the goal
- A progression planner searches forward from initial state to goal state
- A regression planner searches backward from the goal
 - This works if operators have enough information to go both ways
 - Ideally this leads to reduced branching – you are only considering things that are relevant to the goal
Planning Graphs

• Construct a graph that encodes constraints on possible plans
• Use this “planning graph” to constrain search for a valid plan:
 – If valid plan exists, it’s a subgraph of the planning graph
 – Can also provide heuristics for search algorithms
• Planning graph can be built for each problem in polynomial time
Problem handled by GraphPlan*

• Pure STRIPS operators:
 – conjunctive preconditions
 – no negated preconditions
 – no conditional effects
 – no universal effects
• Finds “shortest parallel plan”
• Sound, complete and will terminate with failure if there is no plan.

*Version in [Blum& Furst IJCAI 95, AIJ 97], later extended to handle all these restrictions [Koehler et al 97]
Planning graph

• Directed, leveled graph
 – 2 types of nodes:
 • Proposition: P
 • Action: A
 – 3 types of edges (between levels)
 • Precondition: P -> A
 • Add: A -> P
 • Delete: A -> P

• Proposition and action levels alternate

• Action level includes actions whose preconditions are satisfied in previous level plus no-op actions (to solve frame problem).
Planning graph
Constructing the planning graph

- Level P_i: all literals from the initial state
- Add an action in level A_i if all its preconditions are present in level P_i
- Add a precondition in level P_i if it is the effect of some action in level A_{i-1} (including no-ops)
- Maintain a set of exclusion relations to eliminate incompatible propositions and actions (thus reducing the graph size)

$P_1 A_1 P_2 A_2 \ldots P_{n-1} A_{n-1} P_n$
Mutual Exclusion relations

• Two actions (or literals) are mutually exclusive (mutex) at some stage if no valid plan could contain both.

• Two actions are mutex if:
 – Interference: one clobbers others’ effect or precondition
 – Competing needs: mutex preconditions

• Two propositions are mutex if:
 – All ways of achieving them are mutex
 – They negate each other
Mutual Exclusion relations

Inconsistent Effects

Competing Needs

Interference (prec-effect)

Inconsistent Support
Dinner Date example

- Initial Conditions: (and (garbage) (cleanHands) (quiet))
- Goal: (and (dinner) (present) (not (garbage))
- Actions:
 - Cook :precondition (cleanHands)
 :effect (dinner)
 - Wrap :precondition (quiet)
 :effect (present)
 - Carry :precondition
 :effect (and (not (garbage)) (not (cleanHands)))
 - Dolly :precondition
 :effect (and (not (garbage)) (not (quiet))))
Dinner Date example
Observation 1

Propositions monotonically increase
(always carried forward by no-ops)
Observation 2

Actions monotonically increase
Observation 3

Proposition mutex relationships monotonically decrease
Observation 4

Action mutex relationships monotonically decrease
Observation 5

Planning Graph ‘levels off’.
• After some time k all levels are identical
• Because it’s a finite space, the set of literals never decreases and mutexes don’t reappear.
Valid plan

A valid plan is a planning graph where:
• Actions at the same level don’t interfere
• Each action’s preconditions are made true by the plan
• Goals are satisfied
GraphPlan algorithm

• Grow the planning graph (PG) until all goals are reachable and not mutex. (If PG levels off first, fail)
• Search the PG for a valid plan
• If non found, add a level to the PG and try again
Searching for a solution plan

• Backward chain on the planning graph
• Achieve goals level by level
• At level k, pick a subset of non-mutex actions to achieve current goals. Their preconditions become the goals for k-1 level.
• Build goal subset by picking each goal and choosing an action to add. Use one already selected if possible. Do forward checking on remaining goals (backtrack if can’t pick non-mutex action)
Plan Graph Search

If goals are present & non-mutex:
Choose action to achieve each goal
Add preconditions to next goal set
Termination for unsolvable problems

• Graphplan records (memoizes) sets of unsolvable goals:
 – \(U(i,t) = \) unsolvable goals at level \(i \) after stage \(t \).

• More efficient: early backtracking

• Also provides necessary and sufficient conditions for termination:
 – Assume plan graph levels off at level \(n \), stage \(t > n \)
 – If \(U(n, t-1) = U(n, t) \) then we know we’re in a loop and can terminate safely.
Dinner Date example

• Initial Conditions: \((\text{and} (\text{garbage}) (\text{cleanHands}) (\text{quiet}))\)
• Goal: \((\text{and} (\text{dinner}) (\text{present}) (\text{not} (\text{garbage})))\)
• Actions:
 – Cook : precondition (cleanHands)
 : effect (dinner)
 – Wrap : precondition (quiet)
 : effect (present)
 – Carry : precondition
 : effect (and (not (garbage)) (not (cleanHands)))
 – Dolly : precondition
 : effect (and (not (garbage)) (not (quiet)))
Dinner Date example
Dinner Date example
Dinner Date example