A* Review

- A* uses both backward costs g and forward estimate h: $f(n) = g(n) + h(n)$

- A* tree search is optimal with admissible heuristics (optimistic future cost estimates)

- Heuristic design is key: relaxed problems can help
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or *backward cost* \(g(n) \)
- **Best-first** orders by goal proximity, or *forward cost* \(h(n) \)

\[f(n) = g(n) + h(n) \]

A* Search orders by the sum: \(f(n) = g(n) + h(n) \)
UCS vs A* Contours

- Uniform-cost expanded in all directions

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality
Is A* Optimal?

- What went wrong?
 - Actual bad goal cost < estimated good goal cost
 - We need estimates to be less than actual costs!
A* Graph Search Gone Wrong

State space graph

Search tree

S (0+2) → A (1+4) → C (2+1) → G (5+0)

B (1+1) → C (3+1) → G (6+0)
The story on Consistency:

- Definition:
 \[\text{cost}(A \text{ to } C) + h(C) \geq h(A) \]

- Consequence in search tree:
 Two nodes along a path: \(N_A, N_C \)
 \[g(N_C) = g(N_A) + \text{cost}(A \text{ to } C) \]
 \[g(N_C) + h(C) \geq g(N_A) + h(A) \]

- The \(f \) value along a path never decreases

- Non-decreasing \(f \) means you’re optimal to every state (not just goals)