Chapter 22

Natural Language Processing
Why should agents do NLP?

• Knowledge acquisition from spoken and written language artifacts (e.g. on the web)
 – This chapter
 – *Natural* language is messy!

• Communicate with humans
 – Chapter 23
Outline

• Language Models
 – Predict the probability distribution of language expressions

• Information-Seeking Tasks
 – Text Classification
 – Information Retrieval
 – Information Extraction
Language Models

- Formal languages (e.g. Python, Logic)
 - Grammar (generative)
 - Semantics

- Natural languages (e.g. English)
 - Grammaticality is less clear
 - *To be not invited is sad*
 - Ambiguity at many levels (syntax, semantics, ...)
 - I saw the man with the telescope
 - He saw her duck
 - Suggests modeling via probability distributions
 - What is the probability that a random sentence would be a string of words?
 - What is the probability distribution over possible meanings for a sentence?
N-Gram Models

• N-Gram
 – a sequence (of some unit – characters, words, etc.) of length n
 – Unigram, Bigram and Trigrams for n = 1, 2, and 3

• N-Gram Model
 – probability distribution of n-unit sequences
 – Markov chain of order n -1
 • the probability of a unit depends only on some of the immediately preceding units
N-gram character models

- $P(c_{1:n})$ is the probability of a sequence of N characters c_1 through c_N
 - Typically corpus-based (uses a body of text)
 - $P(\text{“the”}) = .03$
 - $P(\text{“zgq”}) = .000000000002$

- Application: language identification
 - Corpus: $P(\text{Text} | \text{Language})$ (trigrams)
 - Language Identification – use Bayes Rule!

- Application: named–entity recognition
 - “ex “ -> drug name
 - Can handle unseen words!
Smoothing

• What do we do about zero (or low) counts in a training corpus?
 – Sequences with count zero are assigned a small non-zero probability (support generalization)
 – Need to adjust other counts downward, so probability still sums to 1
• Add one smoothing \(\frac{1}{(n+2)} \)
• Backoff (e.g. if no trigram, use bigram)
• Many others in NLP course
• Just like ML, is it better to improve smoothing methods, or to get more data???
Evaluation

• Just like ML, cross-validation with train/validate/test data
• Just like ML, many metrics
 – extrinsic – e.g. language identification
 – intrinsic - perplexity
N-gram *word* models

- Much larger “vocabulary” of units
- Since units are open, out of vocabulary becomes a problem
- “Word” needs to be defined precisely
- Common in speech recognition
Text Classification

• Our spam filter from probability chapters (now think language modeling), can also be recast as supervised learning
 – Input: text
 – Output: one of a set of predefined classes
 – Features: NLP-based (e.g. word and character n-grams)
 • Bag of words: unigrams
 • Feature selection
Information Retrieval

• Corpus of “documents”
• Queries in a language
• Result set (relevant documents)
• Presentation of result set

• Applications: Libraries, Search engines
IR Scoring Functions

• An alternative to boolean models (relevant or not), that assigns a numeric score
 – Useful for ranking in presentation

• BM25 function – linear weighted combination of score for each term in the query
 – TF (term frequency)
 – IDF (inverse document frequency of the term)
 – Document length
IR System Evaluation

<table>
<thead>
<tr>
<th></th>
<th>In result set</th>
<th>Not in result set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Not relevant</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

• Precision
 – The proportion of documents in the result set that are indeed relevant (3/4)

• Recall
 – The proportion of relevant documents that are in the result set (3/5)
 – Hard for www

• Also useful for evaluating supervised ML
IR Refinements

• Beyond words, via NLP
 – Stemming (couch = couches)
 – Semantics (couch = sofa)
 – Usually helps recall at expense of precision

• Google’s PageRank and HITS – web oriented

• Question Answering – “towards” NLP (local research)
 – Web IR for open domain
 – Fall 2010 AI Magazine
 – E.g., CYC, IBM’s jeopardy program
 – Again, tradeoff between deeper algorithms (here NLP) versus just more data
Information Extraction

• “Skimming” a text and looking for occurrences of a particular class of object and relationships among objects
Finite-State Automata

• FSAs for attribute-based extraction
 – price

• Cascaded FSTs for relational extraction
 – Multiple attributes and their relations

• Good for restricted, formulaic domains (WSJ merger reports)
Probabilistic (not rule-based) Models

• HMMs (chapter 15) for noisy and/or varied texts
 – generative (but don’t need)

• CRFs
 – discriminitive
Corpus-Based Ontology Extraction

• Acquiring a KB, in contrast to finding the speaker in a talk announcement

• IS-A hierarchy constructed from high precision query templates
 – NounPhrase such as NounPhrase
 – Forces such as gravity and *

• Automated template construction
• Both sensitive to noise propagation
Machine Reading

• Rather than bootstrapping, towards no human input of any kind
 – NELL: Never-Ending Language Learning
 – http://rtw.ml.cmu.edu/rtw/
 • Read the Web" is a research project that attempts to create a computer system that learns over time to read the web. Since January 2010, our computer system called NELL (Never-Ending Language Learner) has been running continuously, attempting to perform two tasks each day:
 • First, it attempts to "read," or extract facts from text found in hundreds of millions of web pages (e.g., playsInstrument(George_Harrison, guitar)).
 • Second, it attempts to improve its reading competence, so that tomorrow it can extract more facts from the web, more accurately.